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0 Introduction

1. INTRODUCTION

This book is primarily concerned with the differential equation
AX + Bx = f (1)

where x is a vector function of t, A,B are matrices, and A is, in some
sense singular.

There is an extensive literature on what happens if A is a function of
t, is invertible in a deleted neighborhood of to’ and is singular at to.
An exposition on such "isolated singularities' may be found in [64].

This book is concerned with a different problem. We are not so much
interested in when A undergoes a rank change but rather where the rank of
A is, in some sense constant, and A is singular for all t. Most of the
material in this book has not appeared in text form before. (The primary
exception 1s part of Chapter 3) Some of it appears here for the first
time.

Throughout, our first goal is to explicitly solve the equations involved.
Sometimes we can only give a procedure which leads to a solution.

In Chapter 1, we introduce some of our notation and review the basic
facts we shall need from linear algebra and functional analysis. In
particular, the text requires a working knowledge of linear algebra and
the functional calculus.

In Chapter 2, we shall develop several particular examples of (1) from

Electrical Engineering and Control Theory. As we precéde to develop the



theory of (1) in the later chapters, these theoretical results will be
applied torthe examples of Chapter 2.

In Chapter 3, (l) is studied with A,B constant matrices. The solutions
of this chapter are algebraic and explicit in nature. They form the basis
of several later sections.

Chapter 4 solves (1) with A,B constant by Laplace transforms and applies
these results to the impulsive behavior of electrical circuits.

Chapter 5 discusses A(e)é + B(e)x = £ where € is a small positive
parameter and A(0O) is singular. This falls under the class of problems
called "singular perturbation problems.'" The proofs (but only a few of
the results) of this chapter make extensive use of contour integrals that
arise in the functional calculus.

Chapter 6 will discuss (1) with A,B functions of t, while Chapter 8
will briefly consider higher order systems. Due to page limitations
these chapters are necessarily brief.

In Chapter 7, we consider how one would go about actually solving (1)
for an explicitly given A,B,f.

Theorems, facts, propositions, lemmas, equations and examples are
numbered consecutively within each section. A reference to Example 3.2.3
fefers to the third example in Section 2 of Chapter 3. If the reader
were already in Chapter 3, the reference would be just to Example 2.3.
Within Section 2, the reference would be to Example 3.

Exercises are included in the early chapters. The exercises provide a
way of presenting material that might be helpful or of interest but which
if discussed would break up the continuity of the presentation.

While every attempt has been made to give credit where due, no attempt

~ has been m;de to make the bibliography complete.



This book is an attempt to present, in an integrated fashion, our
approach to a class of problems that we feel are of importance. A complete
discussion of alternative approachs has not been attempted though we have
tried to allude to and reference them as much as possible.

The author would like to acknowledge the contributions of Nicholas J.
Rose and Carl D. Meyer, Jr. They not only participated in much of the
research discussed in this book but provided helpful comments on the

book itself.



1 Background material

1. INTRODUCTION

The mathematical prerequisites for reading this book are a working
knowledge of linear algebra and matrix theory and a familiarity with
analysis including complex variables. In Section 2 we present the
notation we will use and review some of the concepts in matrix theory.
In the remainder of the chapter we treat some of the more specialized
topics that will be used in the remainder of the book: Drazin inverses,
representations of functions of matrices as contour integrals, and
"delta functioms." It is hoped that this will keep the need for outside
reference books to a minimum.

This book is not about generalized.inverses. Rather, they provide a
convenient way to express many of our results. The reader interested in

a more thorough treatment of generalized inverses is referred to [16]:

2. MATRIX THEORY CONCEPTS AND NOTATIONS

The set of complex numbers is denoted by €:; the set of real numbers by R.

mXn

The set of m X n matrices over € is denoted by € ; the m x n matrices

mXn A i 2 . X1y
over R by R . Unless stated otherwise, all matrices will be in € 5

X
The column vectors in the vector space g . will be denoted by
u, X etc.

mx ! '
If AEC n’ we use A* for the conjugate transpose of A. TFor vectors

X,y € €® we employ the usual inner product (x,y) = y*x. The norm of a

vector x € @n is the euclidean norm, ||§“ = (EJE)%' For matrices A € Can’
we use the operator norm, ||A|| = sup{ |[|Ax]] : " [|x]| = 1}.

4



If M is a subspace of €, dim M denotes the dimension of M. If A € s

the range (column space) of A is denoted by R(A) and the null space of A,
{x: Ax = 0}, by N(A). Recall that dim N(A) + dim R(A) = n.

Let M,,...,M be subspaces of ¢", the sum of these subspaces is the

1 s e
b e . € NM, =

subspace, M, + ... + M ={z=3x + ... +x :x €M} TfM Mj {0}
for i # j, the subspaces are said to be independent; 'the sum is then called
a direct sum and we write M1 D...0 Ms' Recal.l that dim (M1 ... ®MS) =

dim Ml + ... + dim Ms and if x € Ml D... 0 Ms, then there exist unique

x. € M, such that x = x, + ... + x_.
=H i ] =s

X
A projection is a matrix P € €™ such that P2 = P. It is easily seen

(]

that R(P) + N(P) = c". Conversely if " =M @ N, there exists a unique

projection P such that R(P) = M and N(P)

N; we denote this projection by

PM T the projection onto M along N. 1If M is a subspace of Cn, the

L
orthogonal complement of M is M~ = {x € ¢" : (x,y) = 0 for all y € M}.

I

n
MY is a subspace and M@® M = €. PM e is denoted by P.
s

.1.

mxn 3 H Xm : SR
If A€EC , there exists a unique matrix A € ¢™™ which satisfies the

equations AATA S EA A+AAJr = Af, AA+ = PR(A)’ A+A = PR(A*)’ The matrix A+
is the Moore-Penrose (generalized) inverse of A. If Ax = b is consistent,
~ then A+E is a solution (in fact the solution of minimal norm) and all
solutions are given by x = A+§_+ (I - ATA)h>where h is arbitrary.

We shall often make use of block matrices. In particular, if A € ann
is block diagonal, that is A has blocks Al""’As along the main diagonal

and zero blocks elsewhere, we write A = diag (A ,AS).

100 ;
The eigenvalues of A € man are the roots of the polynomial det(X - A).
(we often write A - A for AI - A where I is the identity matrix). The

spectrum of A is the set of eigenvalues of A and is denoted by o(A). The

spectral radius of A is p(A) = sup{|k| 1 A€ o(A)}).




If A,BE ¢

we say that A is similar to B in case there exists a
3 < et Fr i 4
nonsingular matrix T such that A = TBT ~. Similar matrices represent the
A B n 4 .
same linear transformation or operator on € but with respect to different
xn

bases. We shall also make use of the fact that every A € Gn is

similar to a matrix in Jordon Canonical form, that is A is similar to

X 1- -0
1' .
diag(Jl,...,JQ) where Ji = . : 1| . There may be more than one
Daxisn .o :X.
i

such block corresponding to the eigenvalue Xi.

The numerical range of A € " s W(A) = {(Ax,x) : ||x]| = 1} and the

numerical radius of A is w(A) = sup{|x| : X € WA)}. W(A) is a compact

convex set which contains o(A). In general W(A) may be larger than the
convex hull of o(A). However it is possible to find an invertible matrix
T such that W(TAT—I) is as close as desired to the convex hull of o(A).
To see this we need only consider a typical Jordon block and note that for

nonzero o € € we have

1 et B 05 D) 1 RS O k)

0.-1 g >\° : (6 F (.)
“51 . A .0 5 R .

. 2 : ek - Vi Stk aty

o (ISER o= (LR £ e

By taking o sufficiently small our result follows. This observatiom will
be needed in Chapter 5.

A matrix A € ¢ is positive semi-definite if (Ax,x) > O for all

x € ¢".

If A is positive semi-definite, it has a unique positive semi-

L z
definite square root which we denote A”. That is, (Az)2 = A.



3. THE INDEX AND THE DRAZIN INVERSE

The Drazin inverse can be easily defined using the Jordon canonical form.
However, because of the importance of this concept in our work we shall
provide a self-contained development that will also serve to review some
basic techniques.
nxn ¥ X ¥ :
FEACE L , the index of A, written Ind(A), is the least non-negative

V+1) (we adopt the convention that A° = D

integer v such that N(Av) = N(A
) o 2 n D

Since N(A”) = {0} C N(A) € N(A") ... C N(A") C € it is clear that

v = Ind(A) exists and 0 < v < n. If A is nonsingular, Ind(A) = 0, while if

A is nilpotent of index v (Av =0, A\)_1 # 0), then Ind(A) = v. The index

could also be defined as the least non-negative integer such that

v+1

R(AY) = R@AY™).

Theorem:1.3.1 If A€ €5 and Ind(A) = v, then N(Av) and R(Av) are

invariant subspaces of A and ¢ = R(A\)) 23] N(A\)).

The proof of Theorem 1 is left to the reader. Using Theorem 1,

we can show that

Theorem 1.3.2 If A € €%, Ind(A) = v, dim R(A”) = s, dim N(A)’ = ¢

(s + t = n), then there exists a nonsingular matrix T such that
o= T (1)

where C is an s X s nonsingular matrix and N is a t X t nilpotent matrix

with v = Ind(N).

Proof Let {El""’ﬁs} be a basis for R(Av) and {11""’Xt} be a basis

for N(Av). Then {El""’zs’ Xl,...,y&} is a basis for . If x € Cn,



then there exist unique coordinates a,, B, such that x = Io,x. + IB.y..
i = 1= 1=

i
Let T be the nonsingular matrix [3(_1,...,58, ZI""’Xt]' Then
[ u S ?1 v
x=T| fwhereu=|:"], v=]:"|. Note that x € R(A") if and only if
0k o R
= s t

0 and x € N(A") if and only if u = 0. If y = Ax, we have

o[t e mf2] [2]r o [2)- 5

s X s and Nis t x t. Thus @ = Cu + Dv and = Eu + N

|<
I

] where C is

<=

. If x € R@aY),

<
<

then v = 0, and since y = Ax € R(A"), ¥ = 0. Thus Eu = 0 for all u and
E = 0. Similarly D = 0 and T lAT = diag(C,N) as claimed.

If x € N(AY), AVE = 0 this implies N\)z = 0 for all v. Thus N

0.
But then rank(A\)) =g = rank(C\)) and C is s x s. Hence C is invertible.

R(A"™!) # R(A") now implies that ITnd(N) = v. []

Definition 1.3.1 If A€ man is given in the form (1), then the

-1
C
Drazin inverse of A, denoted by AD, is defined by AD =T I:O 8:' Iy

Note that if A is nonsingular, the N block is missing in (1) and

A_1 while if A is nilpotent, the C block is missing in (1) and

>
"

>
[}

0. It can be shown that the Drazin inverse is unique.

Theorem 1.3.3 If A € €™ and Ind(A) = v, then

AP = APa, aPanP = AP, AMFLAD - 4K gor k> maca) )

alber = Dy S 0y don Tndead s ASE & M) 4 B ks Tad () (3)

M= JaT- s’y (4)
R(A”),N(A") N ,RMAY)



The proof of Theorem 3 follows directly from the definition of AD.
The properties (2) completely characterize AD and are often used as the
definition of AD.

v D v D e

We note also that N(A") = N(A”) and R(A") = R(A7). In addition
x & N(A”) if and only if AADE = 0 which holds if and only if x = (I - AAD)g.

In case Ind(A) = 0 or 1 (the N block in (1), if present, is 0), the

#

Drazin inverse of A is often called the group inverse and denoted by A .
The group inverse has the additional property that AA#A = A. From

Definition 1 we also have;

Theorem 1.3.4 1If A€ ¢ and 0 is an eigenvalue of A of multiplicity
t, then 0 is an eigenvalue of‘AD of multiplicity t. TIf X # 0 is an
eigenvalue of A of multiplicity m, then X_l is an eigenvalue of AD of

multiplicity m.

Theorem 1.3.5 If A E chn’ AD is a polynomial in A of degree n - 1 or

less.

Proof In (1), C is a nonsingular s x s matrix and N a nilpotent
—t-1
t X t matrix where s + t = n. By the Cayley-Hamilton theorem C 3 p(C)

where p is a polynomial of degree s — 1 or less. By direct calculation

we find Atp(A) = AD since t > v = Ind(A). E]

4. FUNCTIONS OF A MATRIX

g : : ; nxn
Throughout this section we use the following notation: for A€ € let
m m m

2

its characteristic polynomial be c()) = (A - Al) 1(A - Xz) PR S N AS) 5

where the eigenvalues Ai are distinct and my + m, sl m, = . Let
V.
i
v, = Ind(ki - A) and Ni = N(()\i - A) 7). We know that Ni is an invariant

subspace for A and dim Ni =m;. We also know that E, = T - (Ai - A)(Ai-— A)D



is a projection on Ni' Since Ei and Ej are polynomials in A we have

E.E, = E,E,. Other properties of N, and E, are;
ji i i

Theorem 1.4.1 Using the notation above: (a) Ni N Nj = IO Al
(b) EiEj=EjEi=0,i#j () ¢" = NON,® ... ON,
d) I-= E1 ar E2 ey ES.

Theorem 1 may be proved directly or by inductively applying the proof

of Theorem 3.2 to A - Ai forodn=ilEsre

Theorem 1.4.2 If p()) is a polynomial of degree N, then

4 e

s

p(a)

CACEA: D) E (1)
=1 %0 ket

Proof By Taylor's theorem, p(A) = z p(k)(A )(A - Xi)k/k!, thus
k=0

el
i

N
o (k) k i (k)
p(A) = kzo P (A (A - A)/k!. But p(A)E, = kZO P () (A = ADE /k!

since (A - )\i)kEi =0 for k > v;. The result now follows since

p(a) = p(AY(E, + ... + E). []

Theorem 1.4.3 If f is an analytic function of X € C for ]A[ < R and

p(A) < R, then f(A) exists and

oyl f(k)(x)

B 3 —k-—(A-X)E (2)
i=1 k=0 W
a0 N
Proof ‘Tf £(k) =3 a gl [x] < R, letiS (x) = } a A . By Theorem 2 we
ey 0 N o nn
GATTE e N Y
have SN(A) il T ————iT———— (AN Xi) E;. Since the sum is a finite sum

i=1 k=0

and SN(k)(Ai) »»f(k)(ki) as N > ©, we may let N » = to obtain the result. [j

10



Note that, since v, < m, and (A - A,)kE, = 0, k > v,, we may replace v,
i u i ek i
by m in (2). Thus only the algebraic multiplicities of the eigenvalues

are needed to find f(A). A useful consequence of (2) is that

Theorem l.4.4 If f, g are analytic for |X| < R and p(A) < R, then
B = (k) € snd oLy HE f(k>(xi) - g(k)(xi) for k = 0,1,...,v, ; and

i=1,...,8. In particular, if r()\) is a polynomial such that

f(k)(xi) = r(k)(xi) il gt T

i-1 and =41 ,....8, then F(AY = r(A).

Thus to find f(A) it is only necessary to find the Hermite interpolating
polynomial described in Theorem 4.
The most important matrix function for our purpose is the matrix

exponential. Since el = ZAn/n! converges for all A, eA exists for every

v,.-1
s ¥ o
square matrix and eA = Z z g_i_(A - X,)kE_. Since ele—x =1, we
i=1 k=0 Kk 3
have by Theorem 4 that eAe_A = I, Thus eA is invertible and (eA)_l = e_A.
For t € R we find that
v,-1 et
s it Reary!
At t k.
g "f%?‘“ (& = X)E,. (3)
i=1 k=0 i
B Gt = x 650~ (0 - a0 O e ~ a1l B o v, and the
i i i i Al
eigenvalues of At are tki. We may also prove from (3) that
i eAt = AeAt = eAtA. Thus eAtx provides a solution to X = A L S (0D =N
dt ) I b 7 )
e 3 -1 1
Example 1.4.1 Find e if A=12 0 IHfs | Westind-o(A) = £1,2,3:
1 -1 2

A D)
thus e £ r(A) where r(}) = a + BA + yA” is determined from the equations

e 2t
et o R AR Ee o + 28 + 4y, te = B + 4y. Solving these equations

11



we obtain o = 2te2t - 3e2t + Aet, R = -3te2t + 4e2t - Aet,
Y = te2t = e2t + et. Thus we obtain
62t+te2t _tezt tezt
A
e t = ol + BA + yA2 = —et+e2t+te2t et—te2t te2t 5
A A £ 2t
-e +te e —e e

Alternatively we have for any analytic function f, f(A) = f(l)El +

£()E, + £'(2)(A - 2)E,. Setting £(\) = (A - DY R i AR A LA 25 E

and since E, + E, = I, E, =1 - (A - 2)2. Thus

1 2 2
0 .0 0 1 Q"0 1 -1 1
f(A) = £(1) | -1 1 G R B e ) et T R () ) =1 1
= 1 0 1 -1 1 0 O=500

Setting £()) = eAt we reproduce the result above. This method has the
advantage that once the projections Ei are determined for a particular

matrix A, they may be used to evaluate any admissible function of A.

The Drazin inverse also has a spectral representation and can be

computed in the same manner as for analytic functioms.
{

Theorem 1.4.5 Let A € chn be singular with characteristic polynomial
m m, m
c(A) = x () - Xz) 1 9 -
m n-m, -1

1(a T Vo WS T TR A - ) and r(})

D
Then A~ = r(A) where r(}) = A 0 1 : n—mi—l

may be computed from the equations

k
(k) _ (-1 k! o P aad ey
T (Ai) = _;_Eifﬂ , k = O’l""’mi—l’ P Ay - U
i
Also
m,-1
s i k
g e i
i=2 k=0 A

12

.

A (s As) S where Ai # 0andm, +m, + ... +m_ = n.

(4)

(5)



Proof We know that AD = r(A), a polynomial in A, which has the form
m_+1 D m1 m1+1 m1 m1+1
given. Since A A" = A~ we have A FEAY =240 et £EA) ==X r(})
m

and g(}) = A 1. Then, f(k)(ki) = g(k)(ki) by Theorem 4 since f(A) = g(A).’

Computing these derivatives yields (4). Equation (5) follows immediately

from (4). l:]

Example 1.4.2 If A€ ¢4X4 has o(4A) = {0,0,1,1} we have AD = r(A) where

Sy -1 = 2a, + 3a, where

¥ o2 : . ¥
r(l) = A (ao + alk). Equation (4) yields 1 = 1’ 0 1

)

ag = 4 and ay; = -3. Thus AD = AZ(AI - 3A).

5. REPRESENTATION OF MATRIX FUNCTIONS BY CONTQUR INTEGRALS

In some of the later chapters it will be very helpful to use representations
of matrix functions by contour integrals. Recall that if f(z) is analytic
in and on a simple closed rectifiable curve or contour, C, then

ff(z)dz = 0. Also if z is in the interior of C, then

C
k! f(x
£() = 5h J FEO ana €090y - £L | o (Z;kﬂ ) (1)
c {pefieH

We obtain similar representations for functions of a matrix. If

nxn

A€ C , the matrix function (A - A)_1 is called the resolvent of A. It

is analytic for A & o(A). If the characteristic polynomial of A is
m m
c(d) = (A ~ Xl) 1...(X - RS) S where the A; are distinct and
n, s Y mS = n, then the spectral representation of the resolvent is
o o orvaat

-1
ey = ) )} ———=E : A& o(a) (2)
e S xi)k+l i

where Ei =1~ (Ai - A)(Ai - A)D is a projection.

13



Theorem 1.5.1 If A€ € " and f is analytic for |X| < R and p(A) < R,

1 1

then £f(A) = — ( £(A) (X - A) "dX where C is a contour lying in the disc

% O

¢

|A| < R and enclosing all the eigenvalues of A.

Proof Using (2) we have

m,
1 BT ot Ul £()) k
mg ) fma=atas ] oan | B aa
3 i=1 k=0 6 (=2

mi—l f(k)(}\.)

i k
‘——Ea———'(A = Ai) E, = £CA). ||

S

i=1 k=0

Corollary 1.5.1 If o(A) o, U o, where oys 0, are disjoint sets of

1 2 2

eigenvalues and C1 is a contour containing % in its interior and 9,y in

its exterior, then

1 1

27i

dx = f(A)P

[ £ (X = A f(AP)P where P is the projection

Plai = SUISRCh= A0k &40 )
AEg

1 =i
ST J (X = A) “dXx.

1 C1

1f Ct is a continuously parameterized family of contours for t in some
interval I and Ct N g(A) = @ for all t and if f is analytic on and -inside
all the C,, then E%T f £ = AYTha% 15 dndepondent-of i, This
C

E:
observation will be useful later.

6. DELTA FUNCTIONS

Occasionally we shall talk about the impulsive behavior of systems. A

convenient way to do so is with delta functions: Delta functions will

14



also provide a way to give the appropriate kernels in the section on
boundary values.
§ et AREN e O (1)

The delta function &§(t) and its i— derivative, § (t), are not:
actually functions, but rather objects in a larger space to which the
operations of differentiation, integration, and taking Laplace transforms
may be extended. It is not our intention to carefully define delta
functions but rather just state the properties they have.

8§(t) has the following properties. For t # 0, it is a "function" and
is identically zero. &(0) is undefined. However,

b

J f£(£)8(t)dt = £(0) (1)
a

for any function f that is continuous at zero and interval [a,b] with

0 € [a,b].

b
In particular, J §(t)dt = 1 and
a

§(s)ds = h(t) = - (2)

ft 0 dflr' < O
-1 L e

Thus 8(t) can be viewed as the derivative of the h(t) in (2).
The Laplace transform of § is L[§] = J e_Sts(t)dt = 1. For integers
(1) th o
il © (t) is the i— derivative of §(t). It is also a function for

t # 0 that is identically zero. In addition if £(t) is i-times continuously

differentiable at 0, and 0 € [a,b], then
i (1) (1)
J Eebya > (yde = (=) 15 (0), : (3)
a
i

Similarly, L[d(i)} = J e'Sta(i)(t)dt = s,
5
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The delta functions behave in formulas much like functions. In
particular, integration by parts holds with the proper interpretation.
Also if ¢ is a real number, f is i-times differentiable at c, and
¢ € [a,b], then

x (1) 1.(1)
j f(e)$s (t - c)dt = (-1)° ¢ (c).
a

Intuitively, one thinks of 8(t - ¢) as a "sudden impulse'" at time c.
It can be shown that, in the appropriate sense, §(t) is actually the limit
of functions fn such that J fn(t)dt =) fn(t) =0 if |t| > 1/n. For
example, we could take fn(t)—= 0 if tA¢ [0,1/n] and fn(t) = n for
0 <t <1l/n. For n large, these fn look very much like what one would

envision a "sudden impulse'" to be.

7. EXERCISES

P m e e S G SRR S PIE S S ol U

2. If A€ C ™ and A = T{diag(Al,Az)}T_l where A, A, are square, show

10 A
that AF = T{diag(AlD,AzD)}T'l.

: D
T pEk e and C 1s square show that AD ot L o g
BEiiC D, 2 D
(G BE G
4, In problem 3 show that A has index 1 if and only if C has index 0 or 1
and CDCB = B.

D D
S TN e man and A, C are square, show that MD = [A B] 4 18 ﬁj where
0 )

020
.25t B e D R A e D_D
X= (A" } {@a)yBCHI=ccy+(I-ar) J faA™B(C) HC) - ARG
i=0 i=0
with k = Ind(A) and & = Ind(C). (For a proof see [16, p. 139])

6. Show that if AB = BA, then (AB)” = BPAP = APgP.

7. Let c()) be the characteristic polynomial of A show

D

(3) - e = O 5 Sy o Al e nalie are
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3 2 D 4

[ 80 a0 O S e D Sy

D

A e VPR ST SR, TR L e S e, T e

A*, show that Ind(A) < 1.

ey
2mwi

If A is hermitian, i.e. A

j L R e )
'y

the eigenvalues of A except the zero eigenvalue.

=f A ann, show that AD
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2 Examples of singular problems

1. INTRODUCTION

As mentioned in Chapter 0, this book is concerned with systems of the form
AxF By =1 f (1)
and its discrete analog

A§k+1 + sz - Ek’ (2)

where A is singular. While we are primarily interested in the mathematical
aspects of (1), it is helpful to know where such systems occur. For one
thing, it helps justify the study of (1). Secondly, it is interesting to
consider the 'physical' interpretation of some of our assumptions and

results. Of course, one can talk of "systems theory' applications of (1),
but that, in a sense, is the same as the original mathematical theory.
Instead, we have preferred to present several problems, some specific,

some general. Our review will be brief, but hopefully sufficient to show

* where (1) can occur.

2. CONTROL PROBLEMS

There are two basic types of control problems we shall be concerned with,
optimal and constrained.

In general, an optimal control problem involves a process x, which is
regulated by a control u. The problem is to choose a control u so as to
cause x to have some type of desired behavior and minimize a cost J[x,u].
The cost may, of course, take many forms. It may be time, total energy, or

18



something else. The desired behavior of the process may range from going
to zero to hitting a moving '"target.'" Finally, the process may depend on
the control in a variety of ways, often nonlinear. We shall be interested
in the following problems.

Let A,B ben X n and n X m matrices respectively. All matrices and
scalars are allowed to be complex though, of course, in many applications
they are real. Let Q,H be positive semi-definite m x m and n X n matrices.
Finally, let x,u denote vector valued functions of the real variable t.

X is n x 1 while u is m x 1.
We consider the autonomous (time independent coefficients) control

BrOCESS
x = Ax + Bu (1)

on the time interval [to,tl] with quadratic cost functional

tl :
J[x,u] = —%J (8x,x) + (Qu,u)dt. (2)
&
o
If one has a fixed pair of vectors X ,X, such that there exists controls

u so that the process x is at x at time t, and x, at time t then one can

1 12

ask for a control that minimizes the cost (2) subject to the restraint

that g(to) = X5 z(tl)

Using the theory of Lagrange multipliers one gets the system of equations

A+an+Hx =0
X - Ax - Bu =0 (3)

BAL + Qu = 0

as necessary conditions for optimization.
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If Q is invertible, then u can be eliminated from the second equation
and the resulting system formed by the first two equations solved directly.
We shall be most interested then in the case when Q is not invertible,

"though our results will include the case when Q is invertible.

The system (3) can be rewritten as

1.0 0 3 A% 0 X 0
e x|+ |o =& -8 T (4)
00 0 u B* 0 Q u 0

Note that (4) has leading coefficient singular and is of the form (l.1).

This problem (1), (2) will be referred to as the Basic Quadratic Cost
Préblem.

Optimal control problems with singular matrices in the quadratic cost
functional have received much attention. They occur naturally as a first
order approximation to more general optimal control problems. [36] surveys
the known results on one such problem with singular matrices in the cost.
See also [1].

Many variations on (1) - (2) are possible.

For example, suppose that the cost is given by Jtl (Hx,x) + (Qu,u) +

Es
(x,a2)dt where a is a vector. Then the right hand side of (4) has
a = [a*,0%,0%]* instead of the zero vector.
Another variation on the same type of problem is process (1) With the

t
cost functional J[_AB]=“%J } (Hx,x) + 2(u,Cx) + (Qu,u)dt where [H C]

*
R c* Q

is positive semi-definite, [1]. 1In this case the system to be solved is
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»
*
=]
0
*

| >

(5)

c o H
o H o
Lo o ST S
e o[>
+
H..
o+
1
(o S =
|
o S
e X
I
lo Jo |o

Note that (5) is in the form of (1.1).
A different type of control problem is one where the output is specified.
Given output y, state vector x, and process é = Ax + Bu, find a control u

such that y = Cx + Du. The appropriate system then is

—
o
B
I
>
i
o]

[ %
o

+ = ! (6)

o
=D
I «
O
(o}
e

he

If y and u are the same size vectors, then (6) is the nonhomogeneous form
of equation (1.1).

One frequently does not want to have D é square matrix in (6). In this
case the block matrices in (6) are rectangular.

Another problem, closely related to the preceding, for which our results

have proved helpful is the General Continuous Linear Programming Problem

[59]. This problem is a cqntinuous version of the linear programming
problem.

Let K(t,s), B(t) be m X n matrices, x(t) an n-vector, b(t) an m-vector,
[0,T] a fixed time period. Finally, let x > 0 mean that each entry of
g(t) is non-negative. Then the general continuous linear programming
problem is to minimize

T ;
J c*(t)x(t)dt (7)
0

subject to

t
B(E)x(t) + J K(t,s)x(s)ds = b(t), x > 0, t € [0,T], (8)
0
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An important special case of this is the following linear optimal control

problem; minimize

T
J cF()x(e) + ci(t)u(r)de _ WD)
0

subject to

[ o
I}

%
+
2
+
o

lo
1
(o
B
+
=
=
+
o

(10)

x >0, u>0, x(0) given, t € [0,T].

Note that (8) is an integrated form of (10) and that x in (7) is [%] in
(9) - (10). 1In [59], Perold develops a theory for (7) - (8) and (9) - (10)
which parallels closely that of the ordinary simplex method. This
necessitates characterizing basic feasible solutions and extreme points of
(10). The results of Chapter 3 play a basic role in this development.
These control problems all have their discrete analogues. Discrete
control systems arise both as discretized versions of continuous systems
and as systems of independent interest. For example, a discrete analogue

of (1) - (2) is:

Discrete control problem. Let A, B, Q, H be matrices of sizes n X n,

nxm, mXxXm, and n X n respectively. Assume that Q, H are positive

semi-definite. Let N be a fixed integer. Given the process

X = A +Bu, i=0,.,8-1, (11)
the cost |
L N
Jx,ul = 7 izo (Bx,x,) + (Qu,u.), (12)
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e

and the initial position Xos find the control sequence which minimizes the
cost. Here x = {x,}, u = {u,}.

The discrete version of (6) would be

Epgy ~ 2Ee T B,
(13)
> Cgi + DEi'

More specific examples of discrete systems are given in Sections 4 and

5 of this chapter.

3. ELECTRICAL CIRCUITS AND IMPULSIVE BEHAVIOR

The ideas of this section could be applied to mechanical and other systems
of a non-electrical nature but for purposes of introduction it is
convenient to think in terms of electrical circuits. We shall be concerned
with circuits whose only elements are inductors, capacitors, and resistors.
If q is charge and i = dq/dt is the current, then the voltage drop across a
circuit element is proportional to q for capacitors, i = dq/dt for
resistors, and di/dt = dzq/dt2 for inductors. Applying Kirchoff's laws to
the currents in the different loops, we get a model for the circuit which

is a system of differential equations;

Ax + Bx = f (1)

If both dzq/dt and q are present, then the original second order system is

X

written in the form of (1) by the usual, x = i s X =45 X, = dq/dt,

%
change of wvariables.

If some of the terms in A are small, then it is of interest to analyze
(1) when these small terms are set equal to zero. This may make A

singular. Such singular perturbation problems are discussed in Section 6.
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Another possibility is that the vector X has many components and
there is an unknown redundancy in (1) which causes A to be singular.
However, of more importance is the following problem. Suppose that the
circuit is operating at time t < 0. At time t = 0, the circuit is
reassembled in a different fashion in such a manner that the value at

t = 0, (denoted x(0 ) = lim_ x(t)) is inconsistent with the new system.
>0

The result is an impulsive behavior of the system to a new state which is

consistent with the new equations. An intuitive example is the "sparking"
which sometimes occurs when subsystems are suddenly connected together.

This reassmebly could be due to component failure or the throwing of a
switch. The same ideas are also of importance in examining how the
properties of interconnected subsystems are reflected in the composite
system. For an extensive analysis and discussion of these problems see
[63] which is written in systems theory language.

For a very simple example of an impulsive behavior consider a circuit
consisting of a capacitor of capacitance C and a voltage source of constant
voltage E forming a simple circuit for t < 0. Then q(t) = CE, i(t) =0
for t < 0. At time t = 0, the capacitor is shorted out so that for t > 0,
q(t) = 0, i(t) = 0. 1In this case, q has a jump discontinuity at t = 0,

and i(t) = -CES8(t) exhibits an impulse at t = 0.

4, THE LESLIE POPULATION GROWTH MODEL AND BACKWARD POPULATION PROJECTION

Suppose that a population is partitioned according to age groups. Given
specific rates of fertility and mortality, along with an initial age
distribution, the Leslie model provides the age distribution of the
survivors and descendants of the initial population at successive, discrete

points in time.
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It is a standard demographic practice to consider only one sex at a time.

We will consider only the female portion of a population.

time (e.g. 5 years, or 1 year, or 10 seconds, or .5 microseconds, etc.).

Let At denote one unit of time.
the maximum age to be considered.

age intervals; A, = (iAt, (i + 1)At] for 0 < i <m - 1.

Select an integer m such that m(At) is

Construct m disjoint age classes or

initial point in time and for each integer n let tn = n(At) + -

Let us agree to say a female belongs to Ak at time t if she is living

at time t, and her age lies in A, at

k

Let to denote an

time t. To define the survival and

birth rates, let pk(t) be the probability that a female in Ak at time t

will be in Ak+1 at time t + At (survival rates). Let bk(t) be the

expected number of daughters produced in the time interval [t,t + At),

which are alive at time t + At, by a female in Ak (birth rates).

Furthermore, let nk(t) be the expected number of females in Ak at time t.

Finally, let n(t) = [nl(t),...,nm(t)]*. For convenience, adopt the

notation E(ti) = n(i), pk(ti) = pk(i), and bk(ti) = bk(i)'

the age distribution of our population at time ti’ n(i). From this

together with the survival rates and birth rates, we can obtain the

expected age distribution of the population at time ti

-
nl(i + l)T

n2(i + 1)

nm(i + 1)

) 4

or n(i + 1) = T(1)n(1).

b, (1)
py ()
0

0

b, (1)

0

+1 28
Wit v tond)
b, b ()| |n @)
3 0 0 n%(i)
S LR n_ (i)

The expression (1) is the Leslie model. Many

times, the survival rates and birth rates are constant with respect to

the time scale under consideration.

Select a unit of

Suppose we know

(1)

Let us make this assumption and write

25



pk(t) = Pys bk(t) = bk, so that (1) becomes n(i + 1) = Tn(i). We shall
refer to T as the Leslie matrix. Given an initial population distribution,
n(0), it is easy to project forward into time and produce the expected

since n, = TEE(O).

population at a future time, say t = t X

K’

We wish to deal with the problem of projecting a population distribution
backward in time in order to determine what kind of population distribution
there had to exist in the past, in order to produce the present population
distribution. Such a problem might arise, for example, in a situation
where one has statistics giving the age distribution for population A at
only the time ti and other statistics giving the age distribution for

population B at a different time, say ty If one wishes to make a

+x'
comparison of the two populations at time ti’ then it is necessary to
project population B backward in time.

The problem of backward population projection is trivial when T is
nonsingular. If T is singular, the problem is more interesting. The
Leslie matrix is very often singular since not all age groups have
offspring.

Frequently, members of a population are added to or removed from a
population by factors other than birth or death. For example, immigration

of people, harvesting or stocking of animal populations. In these cases,

the model is
n(i + 1) = Tn(d) + £(1 + 1). (2)

If we wish to perform backward projection from time £ we get, setting

ko= =1,
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Tn(k + 1) - n(k) = -f(k) g 2o W (3)

which is in the form (1.2).

Note that if (3) is viewed as a process and f(k) as a control, this could
become a control problem. That is, to achieve a desired state n(i), from
an initial state n(0) what should the f(j) be for 0 < j < i - 1?

The reader interested in a detailed analysis of (2) with £

% = 0 is

referred to [16]. For asymptotic behavior see [9].
With little change (2) could also be used to model migration between

geographical areas instead of age groups.

5. THE LEONTIEF MODEL

The Leontief model is a dynamic model of a multisector economy. It is
constructed as follows. Suppose the economy is divided into n sectors.

n .th : B p
Let lk € € have i— component the output in the k— time period of sector
: n VEI F th
i. Let d, € € have i— component the final demand (demand in the k—
time period excluding investment demand). Let bij be the amount of
commodity i that sector j must have to produce one unit of commodity j.
Let B = [bij]' Note that if a given sector does not produce a commodity
that is utilized by others, (for ekxample agriculture [40]), then B may
have rows of zeros. Thus B is often singular. Let aij be the proportion
of commodity j that gets transferred to commodity i in the kEE time period.
A= [aij] is called the Leontief input-out matrix or the matrix of flow

coefficients. The Leontief model then says that

amount of commodity i = amount of commodity i inputed by all
sectors + amount needed for production of the next output ()

x(k + 1) + amount used to meet noninvestment demand (consumption).
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Note that a component of X4 could be lower than that of Xy if for example

4, 1is large. In matrix form (1) is x, = Ax + B(}_{_k+l - Ek) * ék

5 OF

B,y [A-B - I]5k = —gk (2)

While A,B could be functions of k, we shall assume they are constant. If
B is singular, (2) is an equation of the type (1.2).

Equation (2) can be viewed as a deterministic or control problem. For
example, future demand levels may be effected by government policies so
that gk could be altered to try and produce a desired Xl This then
would be a singular control problem like those discussed in Section 2.

We refer the reader interested in more economic background to [40], [44],
(48], [49], [50], [53] or their bibliographies.

Leontief [48, Chapter 3] has also proposed the continuous version of (2),
Bx = (I - A)x + d. (3)

We shall see in Chapter 3, that (2) exhibits a forward time dependence
while (3) does not. Moreover (3) is consistent for sufficiently smooth
demand. The only difficulty with (3) is that part of d must be
sufficiently differentiable and (3) is not consistent for all x(0) if B
is singular. These problems can be avoided if impulsive solutions to (3)

are allowed.

6. SINGULAR PERTURBATIONS

In many applications, a boundary value problem, denoted by Pe’ depends on a
small positive parameter & in such a way that the "full" differential
equation € > 0 is of higher order than the '"reduced" equation obtained by
setting € = 0 Since the reduced equation is of lower order than the full
equation, the solution of the reduced problem cannot be expected to satisfy
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all of the boundary conditions of the full problem. Thus, even if the
limiting solution exists, uniform convergence cannot be expected near the
boundary as € +~ 0. Such regions of non-uniform convergence are called

boundary layers and are the distinguishing feature of singular perturbation

problems.

Several questions arise:

(a) Does the solution of Pe have a limit as € » 0?

(b) If a limiting solution exists, does it satisfy the reduced equation?

(c) If the limiting solution satisfies the reduced equation, what

boundary conditions will be satisfied by the limiting solution?

(d) What are the asymptotic representations of the solution?

A classical example of a singular perturbation problem that is easy to
visua{ize and illustrates the general behavior of almost all singular
perturbation problems is the flow past a body at low viscosity. In viscous
flow, the tangential velocity must be zero at the boundary of a body
(no-slip condition), while in inviscid flow, the fluid can slide along the
boundary. Thus if viscosity is neglected, the solution of this '"reduced
problem" will not approximate the actual viscous flow near the boundary.
However, for small viscosity, the actual viscous flow will be closely
approximated by the inviscid flow except in a narrow strip near the boundary.
This narrow strip is often called Prandtl's "boundary layer." For this
example, the governing differential ‘equation is a non-linear partial
differential equation, the Navier-Stokes equations. However, the methods
of solution involve principles similar to those employed in singular
perturbations of ordinary differential equations.

We shall be concerned with systems of the form

A(e)x = C(e)x + £. (1)
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Systems of the type’(A) and generalizations of (4) to variable
coefficients occur naturally in the analysis of linear dynamical systems
with a finite dimensional state space. Such systems play an important role
in engineering problems in mechanical, electrical, and chemical engineering.
The parameter € can represent various small quantities, for example; mass,
moment of inertia, time constants, capacitances, inductances, or
concentrations. When these small parameters are neglected (e = 0), the

reduced system
Ax = Cx + f (2)

can be expected to have A a singular matrix since neglecting the small
parameters results in a reduction of the system's "order."

Small coefficients of derivatives can create "stiff" differential
equations. Singular perturbation techniques can be used to solve the
smaller reduced problem and then build an approximate solution of the full
problem. Singular perturbation techniques can also be used to examine slow
and fast effects,

Singular perturbation techniques are also important in control theory.
Wilde and Kokotovic [65] give a development based on standard control
theory-oriented assumptions: controllability, observability, and
inyertibility whenever needed.

Similarly Porter [60] assumes invertibility and controllability of the
appropriate matrices as needed in studying g_= Ax + Bz, ;é = Cz + Du.

As to be expected the solution of (1) involves an exponential. In
Chapter 5 we will develop expansions of various matrix exponentials in terms
of € and apgly them to (1). We will then examine some particular singularly

perturbed problems. For example, the relationship between the system
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_;5 = Al(e)gg + Az(s)z

" (3)
ey = BI(E)E + Bz(e)l
and the reduced system
b Ali + Azl
(4)
0= Bx+ By
will be examined in detail, as well as the related process
x = Al(e)_)g + Az(e)y + AB(Q)E
. (5)
ey = Bl(e)g_ + BZ(E)X + B3(e)g
and its associated reduced problem,
X = A1_¥_+A21+A39.
: (6)
0= B15>+ B21>+ ng

(5) - (6) is, of course, just the non-homogeneous form of (3) - (4).
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3AX + Bx £ f, algebraic solution

1. SQUARE COEFFICIENTS

This section will discuss how to solve

Ax + Bx = f, (1)

and the initial value problem

Ax + Bx = £, x(t ) = ¢ (2)

n

X
when A,B € c” , £ is a vector-valued function. These results originally

appeared in [17], and an improved version in [16].
If A is nonsingular, then the classical theory applies and one has the
following results:

I. The general solution of the homogeneous equation, Ai + Bx = 0, is

-1

given by x(t) = e_A Bt_q, q € c".

II. The homogeneous initial value problem, Ai + Bx = 0, _)g(to) = ¢, has

-1
the unique solution x(t) = has B{t = to)g

ITII. The general solution of the inhomogeneous equation Ai hB = - f
-A"lBe -a 1Bt Jt A lp
e e

a

continuous, is given by x(t) = e SA—l_f_(s)ds,

asR,g_eGn.

IV. The inhomogeneous initial value problem Ai + Bx = f, 5“0) =c, £

-1
e—A B(t - to)_c-

continuous, has the unique solution x(t) = +

t -1
I e-A B(t - s)A._li(s)ds.

t -
o]
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It is worth noting that (I) - (IV) do not depend on any deep results
concerning ordinary differential equations but can be derived very quickly
using the matrix exponential developed in Chapter 1. One just multiplies

-1

the differential equation i e A—IBE = A_lf_by eA Ak to obtain

-1 -1
— (e X) = eA BtA—lﬁand then integrates both sides.

When A is a singular matrix, things can happen that are impossible when
=i i 2 b
A exists. For example, the homogeneous initial value problem may be
inconsistent, that is, there may not exist a solution. If there is a

solution, it need not be unique.

. Q «1: @ (o
Example 3.1.1 Consider Ax + Bx = O where A=|0 0 O|, B=|0 0 O
D0 0 ) RS )
The equations are iz s Xq = 0, X, = 0. The solutions are X = 0,
i
X, = —[ x3(t)dt 4=ty Xq arbitrary. Thus solutions exist only for initial
0

points of the form x(0) = [O,a,B]T and solutions are not unique.

+
e
]

Example 3.1.2 The equations il + X, = t + 1 are obviously

inconsistent.

o oo

1 0
Example 3.1.3 Consider Ax + Bx = f where A =| 0 115 Bo=, T In
0 0

component form we have X + Xy = fl’ X4 + X, = f2, %. =-Fis The ftrat

3 3

equation has a unique solution for any given f1 and xl(O). 11 4 f3 is

differentiable, the solutions of the other two equations are X, = f2 - f3,

X3 = f3. Thus solutions exist if and only if f, is differentiable and

3
the initial conditions are of the form x2(0) = %2(0) - f3(0), x3(0) = f3(0).

If the solution exists, it is unique.
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X
Definition 3.1.1 For A,B ¢ ¢ and to e R, the vector c ¢ ¢" is said

to be a consistent initial vector associated with t, for (2) if (2)
possesses at least one solution. Equation (1) is said to be tractable at
the point t, if the initial value problem (2) has a unique solution for

each consistent initial vector, c, associated with to'

If the homogeneous equation Ax(t) + Bx(t) = 0 is tractable at some point
to e R, it is tractable at every t € R. So we may simply say the equation
is tractable.

Much of this section will be based on the assumption that AA + B is
invertible for some scalar X, That is, AA + B is a "regular pencil" of

matrices [28].

The following simple fact will be quite useful,

Lemma 3.1.1 Let A,B € ann. Suppose there exists a A € € such that

Pk BT antsta, and let A = Cih-4 BT ok kol B, = O+ B)"'B. Then

X

BX =1 - XAA and hence AXBX = BA 2\

B>

The notation AA’ BA will be used throughout this book.

This assumption is natural since
Theorem 3.1.1 For A,B ¢ Can’ the homogeneous differential equation
Ax(t) + Bx(t) = 0 (3)

is tractable if and only if there exists a scalar A € € such that

(0 + }3)"1 exists.

Proof Suppose first there exists a A € € such that (A + B)_1 exists.

Let Ay-= (A + B) la, B, = (A + B TVE = T = Khe! Thue Ax + Bx = 0 is

tractable if and only if Axi + Bxﬁ = 0 is tractable. There exists a
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nonsingular matrix T such that T_lA T = [C O] 5 T_lB T = (I - AA) =

0 N
= AC 0

i where C is nonsingular and N is nilpotent. Letting

R IX the differential equation becomes

I-AC 0 % 0
0 I- ||y, Ak 1Y
Gy, + (I -2y, =0 , Ny, + (I -y, = 0. (4)

The first-equation in (4) is tractable since C is nonsingular. Thus it

suffices to show that the second equation is tractable. Let k = Ind(N).

Multiplying the second equation of (4) by Nk_l we find Nk_IXQ = g,
Multiplying the second equation of (4) by Nk—2 we find similarly that

Nk_?xz = 0. Continuing in this manner we find Y, = 0 and thus

Niz + (I - AN)XZ is tractable.

Suppose now that Aé + Bx = 0 is tractable. We need to show that there
is a A € € such that XA + B is invertible. Suppose thag this is not
true. Then XA + B 1is singular for all A € €. This means that for each

A e €, there is a vector v, € ¢" such that (AA + B)XA = 0 and vy # 0. Let

A

{11 s¥y aeeesYy } be a finite linearly dependent set of such vectors. Let

1 2
ALk s

x, (t) = e * v, and let {a 2O0s3...,0 }'C € be such that z 6 S A3 6
=X\, = =g g = i Hete -

i i a i=1 i
where not all the a,'s are 0. Then z(t) = |} o.X
- pe =1 M

(t) is not identically

zero and is easily seen to be a solution of (3). However,
s

z(0) = z By¥, = 0. Thus, there are two different solutions of (3),
i=1 i

namely z(t) and 0, which satisfy the initial condition x(0) = 0. Therefore,

(3) is not tractable at t = 0 which contradicts our hypothesis. Hence,

(XA + B)_1 exists for some X € C. [j
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Note that XA + B being invertible is equivalent to being able to
formally solve (2) by Laplace transforms. This approach will be utilized
in Chapter 4.

The next theorem will be used to show that most of our later development

is independent of the scalar X which is used in the expression (MA + B)_l.
Theorem 3.1.2 Suppose that A,B ¢ ann are such that there exists a
A€ € sothat (A + B) ' exists. Let A, = (MA+B) 'A, B, = (JA + B) '8,

and fﬂ = (OA + B)_lf_for £ & ¢". TFor all a,u € € for which (oA + B)_1 and

(LA + B)_l exist, the following statements are true.

e e (5)
a o FLEsLL

R R R (6)
a o 1 G L a a L8 s

Ind(Aa) = Ind(Au) and R(Aa) = R(Au). 7)

ISR (8)
o —0 W=

EPE o w e 9)
a —a =

Proof To prove (5), write AaDAa= [ (oA + B)-IA]DAa = [(cA + B)-l(uA + B)
=1,103 S s ks B SRR g
A+ B Al"A = A IR A A = A + A i
(u 3o i [ (a 5 u) u] ¥ Au (o . Bu) . (since Au’ Bu
commute) = AUD[(uA + B)—l(aA + B)]Aa = AuD(uA + B) “(cA + B)(aA + B)_IA

= AUDAN' The proof of (6) is similar and is left as an exercise. To prove

~

A ey -1 - I e =k
(7), write A = [(xA + B) "(pA + B)](puA + B) A = (aAu + BU) Au

= Au(aAu ot Bu)_l. Since Au and Bu commute, it follows that for each

positive integer m, R(Aam) = R(Aum). Thus (7) follows. Td prove (8), use

the same technique used to prove (5) to obtain Aan = [AUD(uA + B)"1
(ah + B)]E, = A P(ua + B) 7 (ah + B) (ah + B) £ = Df . The proof of (9) is

similar. []
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In view of the preceding theorem, we can now drop the subscript X when-

ever the terms A A L A DB qﬁ

am * LB P
Ay s A By, R(A)), Ind(A)), A\ f, and B

appear. We

N

shall do so.
Let's return to the proof of Theorem 1. Recall that the original

system Aé_+ Bx = 0 is equivalent to the equations (4). The solutions of (4)

-1
are y, = SO = Rey (e = t°)91’ d

d, arbitrary, and o B 0. 1In terms of the

original variables we have

o
o]
o

-1
e—C (I - XC)(t - to) 21

x(t) = Ty(t) = T S e
0 0

o
o

ADo an
= o AB(t -t D

where ¢ = T[g_*,gz*]* € ¢" is arbitrary. Thus we have proved the first

1

part of the following theorem.

Theorem 3.1.3 Suppose Ai + Bx = 0 is tractable. Then the general

solution is given by

Ap~ e
x(t) = . B~ to)AA q, q € c”. (10)

A vector ¢ € ¢" is a consistent initial vector for the homogeneous equation
if and only if ¢ = AADQ (c € R(Ak) = R(ADA)), where k = Ind(A).

Suppose that f(t) is k-times continuously differentiable around to.
Then the nonhomogeneous equation Aé + Bx = f always possesses solutions and

a particular solution is given by

2D T k=l e B R e N
G f e® BSaDf (s)as + (1-aaP) T (-1)[as®) Bt ey, )
t 1=0
[0}

x(t) =
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Moreover, the expression (l11) is independent of A. The general solution is

given by
) o ANEL T et aptan 1
S o B(t - tO)AAD_cL+ oA Bt f & B32DZ () as
to (12)
ang kel EPTIIR e
+ (- 2"y} =iy BPg(l)(t),
i=0

» aap K2l i,%°D,isD2(4) *

where g ¢ €', Let w= (I - AA) J (-1)"(AB")'B £'*’(t). Then w is
i=0

independent of X. A vector c € ¢" is a consistent initial vector associated
with to € R for the inhomogeneous equation if and only if c solves

(I - AAD)(E - &(0)) = 0. Furthermore, the inhomogeneous equation is
tractable at ty and the unique solution of the initial value problem with
z(to) = ¢, c a consistent initial vector associated with t,» is given by

(12) with q = c.

Proof (12) will follow from (10) and (l1). We have already shown (10).

To see (11) let

e )Y P U | S e
e J A B8 4y ds, x, = (1 - ady 7 (_1)1A1(BD)1+1£(1)(t),
o

X
1 i=0

where we have taken t0 = 0 for notational convenience. We shall show that

Agl + Bx, = AAPE  and (13)
A k. AnD
Ax, + Bx, = (I - AA)f. (14)
e N ~p -APBe APBe Anp A
To verify (13), note that Ax, = A[-A"Bx, + A'e e £] = -AABx, + AA'f
= —ﬁil + AAPE, as desired. We now verify (14). Aéz is
k-1 i+l k-1 2 i
&A e A (441 ATy ARTy f21 -8 A
a-a" I oenia®y P - @- D 3 niTtes® P
i=0 i=1
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g e, SR Aas et A
EDREED T EP () = (@ - AP)B(x, + B = -Bx, +

= (I - AA)B 2

g~ kol
)
i=1

(1 - AAD)BBPE = -Bx, + (I - AAD)E where the fact that B,BD,A,A commute

2

has been used freely. Thus, x, + x

5 is a particular solution as desired.

1
The characterization of the consistent initial vectors for the inhomogeneous

equation follow directly from (12). That the solutions are independent of

A follows from Theorem 2. []

Note that for tractable homogeneous equations the initial vector must
satisfy (I - AAD)E(tO) = 0 or l(to) € R(Ak). But then (I - ADA)E(tO) =0
for all t so that x(t) € R(Ak) for all t. Similarly, for the non-homo-
geneous equation, the initial vector g(to) satisfies (I - ADA)(E(tO) o
u(t)) = 0 so that (I - APA)(x(t) - w(t)) = 0 or x(t) - w(t) € R(A®) for
all t.

One does not actually need f is k-times differentiable, but rather only

D

that (I - AA )A%ﬁ is i-times differentiable.

An important special case is when B is invertible. Then we may take
A=0and A =38 A,1§=I,£=B"1£.

The Drazin inverse can sometimes be useful even when A is invertible.
If f(s) is a constant vector f, the general solution of i + Bx = f is given

t
by x = [e_Bt J eBSds]£ + e_Btz(a). S exists, x is easily evaluated
a

-1 Bs
e

A Bs nxn . ;
since |e ds = B +G, 6G& € . However, if B is singular, then the

. B g WP .
evaluation of Je Sds is more difficult. The next result shows how to do it

using the Drazin inverse.

Theorem 3.1.4 If B ¢ ann and Ind(B) = k, then

¥9 k-1 k-1
feBSds B S LT ) ek -}21?- + 535} Ly Bk—f] o N Lo
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Theorem 4 is easily proved by differentiating both sides and using the

B 5
series expansion of e S. Note that if f € En, then

k-1 k Dy kol
D (=1)°(T - BB )t B
BE+t ) TR T

f is a polynomial solution of é + Bx = f.

n=1

We shall now work out an example in some detail.

Example 3.1.5 Consider the homogeneous differential equation

. PRt 2 0 1 2
AXx + Bx = O where A=}~-1 0 2|, B=]|-27 -22 -17|. Note that A and
o 18 14 10

B are both singular and do not commute. Since A + B turns out to be

invertible we multiply on the left by (A + B)_l to get Aé + Bx = 0 where

X -1 1 -3 -5 -4 b - 1 (o) BT
A= (A+ B) A=§ 6 5 2 ,B=I—A=§'—6 -2 2
-3 2 # L0 A 2w 7
~D -27- =41 =28
Then A~ is computed to be == | 54 77 46 | . The consistency condition
o =27 =34 -14

for initial conditions (I - AAD)EKO) = 0 has only one independent
equation, 9x1(0) + 7x2(0) + 5x3(0) = 0.

Since o(—ADB) = {0,0,2/3}, it is not difficult to compute the solutioms

" 18 1~ s 201 - e2t/3y x, (0)

Be o wa S Blogsty 1] 5 gy SURHEEE 1601 - 223 | | x. (o)
& 3 L 2¢/3 2t/3 £

0 13(e - 1) 26e -8 x3(0)

The consistency condition can be used to eliminate one of the xi(O).

2. RECTANGULAR COEFFICIENT MATRICES

For many applications it is necessary to solve Aé_+ Bx = £ when A and B are
; mxn

rectangular matrices. If A,BE € and m > n (more equations than

unknowns), the system is called overdetermined, if m < n (more unknowns

than equations), the system is called underdetermined. We shall consider

an important special case of each type.

40



If XA + B is one-to-one (full column rank), then m > n and (unless
m = n) the system is overdetermined. We shall see below thaf solutions, if
they exist, are uniquely determined by initial conditions and we shall
obtain formulas for the solutions when they exist. If XA + B is onto (full
row rank), then m < n and (unless m = n) the system is underdetermined. In
this case, solutions always exist but are not unique.

First we consider the case when AA + B is one-to-one. Recall that this

implies that (XA + B)+(AA +4BY = T

Theorem 3.2.1 Consider Ax + Bx = 0 where A,B € €".". Then
(a) Ag_+ Bx = 0 is tractable if and only if XA + B is one-to-one for
some A € (.
(b) If XA + B is one-to-one for some A, then all solutions are given by
A

o= e_A Btﬂ where A = (QA + B)TA, B= (0 + B)+B and q must satisfy

g = AAPq and [T - QA+ BYOA + B)T1aAP(APB g = 0, 0 < k < n-1. Q)

Proof (a) Assume XA + B 1s one-to-one. Every solution of Ai +Bx =0
is a solution of Ai + Bx = 0, but since XA + B = I, the latter equation is
tractable, therefore the original equation is also. The converse is proved

as in Theorem 1.3. (b) 1If x is a solution of Ag + Bx = 0, then x is a

= - i e 4 DR e
solution of Ax + Bx = 0. But AB = BA and AA + B = I. Hence x = e o BtADAQ
ApyeaTye ~p~. -APBt
by Theorem 1.3. Substituting back in gives [-AA BA A + BA Ale q=0
A an SEE
for all t. Thus [—AADB + BAAD]e : Btg = 0 for all t, or equivalently,

DEL - AB1AP[APRIq = 0 for k= 0,1,2,... . But AB = ACNA +BY'E =

BilE > 53704+ 8) - ADA+ B) 34 A - JAOAH B AR AL0R T BIGAE B R

+BOA+B)A=[1- a+B)0A+B) 1A+ A [

The restriction (1) is often needed.
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Example 3.2.1 Let A
N(XA + B) = N(A) N N(B)

1

[é] 5 B [0] . Then M + B is one-to-one and
{0} for all A. Ax + Bx = 0 has only x = 0 as a

solution. Multiplying by (AA + B)T = (l)\|2 + l)_l[A,l] we get

1 1

A(ixlz + 1) Tk + (‘A[z 4+ 1) x = 0 which has the non-zero solutions

1
-A
X = e tq. The conditions (1) show that we must have q = 0.
Conditions under which equation (1) is satisfied are given in the
exercises.
i i T +
If A (or B) is one-to-one, one may use A (or B ) in place of (XA + B)
in Theorem l. For our applications B being one-to-one is of most interest.

Note however that:

Theorem 3.2.2 Ai + Bx = 0, x(0) = X, has unique solutions for all X

if and only if A is one-to-one (A+A = I) and R(B) C R(4), (AA+B =B},

Proof Assume ATA = I and AA+B = B. Then x is a solution of Aé +Bx =20
if and only if x is a solution of i + A Bx = 0. However é + A+B§>= 0 has
unique solutions for all initial conditions.

Conversely, assume Ai + Bx = 0 has unique solutions for all X, Then by
1), ADAgo = X, for all X - This gives A = (XA + B)+A, and hence A, is
one-to-one. To see that AATB = B, note that every solution of Ag iy =0,

also satisfies Aé + AAfBi = 0 since AnTA = A. Thus AA+B§ = Bx for-all

solutions x. Since E(to) is arbitrary, we have AA+B = B as desired. [:I

Before solving

.

Ax + Bx = f (2)

with XA + B one-to-one, we shall determine when (2) is consistent. Let

P = (M + B)(QA + B)+. Then (2) is equivalent to
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PAX + PBx = Pf, : 3)
(I - P)(Ax + Bx) = (I - P)f. (4)
But (3) is equivalent to

~

Ax + Bx =

| o>

(5)

since ()A + B)TP = (A + B)T. Now (5) is consistent by Theorem 1.3, and

uniquely determines x. Thus (I - P)f is determined by (4). Thus we have

Theorem 3.2.3 Suppose X>A + B 1is one-to-one. Then all solutions of

Ai + Bx = f, if any exist, are of the form

~EENES, poepa
. A BcADAﬂ g0 -APBe f A Bsf(s)ds
(o)
(6)
R 5
43T =oadD I D B e ek
n=0

vhere A = (A + B)TA, B= (A + B)B, k = Tnd(A), and £ = A + B)TE. Let

= (M + B)(OA + B)T. Then Ag_+ Bx = f will be consistent if and only if
(I - P)f = (I - P)(Ax + Bx) @)
where x 1s given by (6).

There are several ways to use (7). In Theorem 1, f was given as zero
and (7) was used to determine the consistent initial conditions. One could,
on the other hand, view E(to) as given and use (7) to determine the

consistent f. In this case we have
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Corollary 3.2,1 If XA + B is one-to-one and A,B are not square, then

there exists f for which Aé_+ Bx = £ is inconsistent. In fact, for a given
z(to) satisfying (1), there is a unique f for which Aé_+ Bx = f is

consistent and Pf = 0.

The case when M + B is onto. Let A,B be m X n matrices. Let A be such

that A + B is onto. Define P = ()A + B)+(AA + B). Then Ai +Bx= £
becomes APi + BPx' = £ —A(L- P)é_— B(I - P)x. Or, equivalently,
- . £f
A(A + B)Y [(AA + B)x] + B(AA + B) [ (DA + B)x]
i (8)

= f - A(I - P)x - B(I - P)x.
But AMAQA + B)T] + [B(A\A + B+)] = I. Thus (8) is, in terms of (MAA + B)x,
a differential equation of the type already solved and hence has a solution

for any choice of (I - P)x. Note that [A[A(AA + B)+] + [B(AA + B)—r]]_l = T,

Theorem 3.2.4 Suppose that A + B is onto and f is n-times differentiable.
fee 2= A0+ B, B = BOA + BT, P, = (\a# BEGR < R,  Let
g=f - A[I - P]ﬁ - B(I - P)h where h is an arbitrary (n + 1)-times
differentiable vector valued function. Then all solutions of Ai + Bx = £

are of the form

x = (4 + B) e PPy 4 4P

-APBe~+p . ~p -APBe [* APBs
e g(s)ds
[e]

e | s e
+ (1 - ADA) z (-l)n[ABD]ang(n)} + [I - Plh, q an arbitrary
n=0

constant vector, k = Ind(A).

The formulas in Theorem 4 simplify considerably if A or B are onto. For
our applications, the case when B is onto is the more important. If B is

onto then one just sets A = 0 in Theorem 4.
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Theorem 3.2.6 Suppose that A is onto. Then all solutions of Ai + Bx = £

i —BA+t e—BA+t

t ma's t
are of the form x = A {e q + J e g(s)ds} + [I - A Alh
o

where h is an arbitrary function and g = £ - B[I - A+A]ﬁ.

Proof This one is easier to prove directly. Suppose A is onto and

rewrite Ag + Bx = f as (Ag) + BAT(Az) = f - B[I - A+A]§. Taking [I - A"

A]5
: ; it it
arbitrary we can solve uniquely for Ax, and use x = A (Ax) + (I - A A)X to

get the desired result. []

3. BOUNDARY VALUES

The preceding sections have developed most of the basic information we will
need on the initial value problem. Of course, the same ideas may be applied

to the boundary value problem

Ax + Bx = £ E§(to) -8 Fg(tl) = b, (1)

X X
where E € ¢" n’ F € ¢P n’ a € Cm, b € Cp, f an n-times differentiable

function on [to,tll. We shall assume AA + B is invertible, but a similar
approach works on rectangular systems.
The classical assumptions are that A is invertible and rank [E] =n. We

shall assume neither. See [21] for a classical treatment.

The question of uniqueness is easier so we shall address it first.

Theorem 3.3.1 The following are equivalent.
(i) The boundary value problem (1), when consistent, has a unique

solution.
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(ii) The associated homogeneous boundary value problem
Ax + Bx = 0, Eé(to) =0, Fﬁ(tl) =0 (2)

has only the zero solution.

n

R ke AL e BT xS
D

(iii) Rank(Q) = rank(ADA)
EACA
B= (A + B)_lB, Q

i AR
Fo b B(ty = £ )20

Proof Since two solutions of (1) differ by a solution of (2), the

equivalence of (i) and (ii) is immediate. Suppose then that x is a solution

ATy~

-ADB(t - to) D

of (2). Then, by Theorem 1.3, x = e A"Aq. To satisfy (1) is

thus equivalent to

—ADB(t1 i < 3 et 3

EADAQ = 0., Pe 0"A"Aq = 0. (3)

But (3) will force ADAQ = 0, precisely when (iii) holds so that (i), (ii),

(iii) are equivalent. []

Suppose now that x is a solution of the differential equation in (1).

Then from Theorem 1.3,

s 51 Rar o X e e g
P R il St e R G R L J e® B8yD¢ (5)ds, (4)
tO
1 ~pa Kol i 2Bl ALY
(L-AA)x=(I-44 ] 1) [aB )]s ™. (5)
i=0

Let h(t) = (I - ADA)E, The boundary conditions in (1) become EADAQ
“DT ol b o ADB(t

+ E(I = AA)h(t,) = a, FA Ae’ L

1 0"A Aq +
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oo R L = t ik K dn
FADAe A B(tl to) f . eABSADf(s)ds + F(I - ADA)Q(tl) = b. Thus we have

E
[e]

the following;

Theorem 3.3.2 For a given f,a,b the boundary value problem is

consistent if and only if

a - Eh(t )
Qq = p~ Sk (6)
b - Fh(e,) - FACAe™A B(fy ~ &) J L eABSE (s)ds
=
(o]

has a solution g.

It is frequently desirable to have a theory of Green's functions when
studying a class of boundary value problems. A corresponding development
is also possible for singular problems, with the appropriate modifications.

So that the interested .reader can easily compare our resu}ts with
standard ones we shall derive a Green's function analagous to that of
Cole [20]. To make notation similar we shall take a = 0, b = 0, and

nxn

E,FEC Furthermore we shall assume as in [21] that the boundary

conditions (1) are equivalent to Eg(to) + Ei(tl) = 0. Finally, take
- 0, t, = 1. Note that our earlier development included more general

boundary conditions than we now have.
-APBe -
Let Y(t) = e . If x is a solution of (1), then x = A
Ay ~p~ oo Lian ATy
and A Ax = Y(t)A Aq + Y(t) [ Y “(s)A f(s)ds, while (I - A7A)x is still
)

Dax + (1 - APayx

given by (5). The boundary conditions give

EAPAq + E(T - APA)h(0) + FY(1)APAg + FY(1) J v (s)A % (s)ds
(o]

D~ (7)
+ F(I - AA)h(1) = 0
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Thus, if (1) is consistent and solutions are unique, letting

+

e =l S i s
R = EADA + FY(l)ADA gives ADAg= -R FY(1) j Y l(s)ADf_(s)ds
0

- RT(EE(O) + Fh(l)). Substituting into (2) gives

s 1 i
APax = —vo)(rTFY (1) J v 1 (s)APE(s)ds - R (En(0) + Fh(1)
(o]

t e
+Y(E) [ Y 1 (s)A % (s)ds.
o
+ iy, caps ¥
= —Y()R'FY(1) f Y71 (s)APE (s)ds + Y(£)R' (En(0) + Fh(1))
(o]

15, Rt t g
+Y(t)R+EJ’ 171 (s)APE (s)ds +Y(t)RJrFY(1)J v (s)APE () ds.
(o] o]

since R+(EADA + FY(l)ADA) is the identity on R(AD) = R(ADA) and AD commutes
~1 pe + T
with Y "(s) and Y(t). Thus A Ax = Y(t)R FY(1) J Y “(s)A f(s)ds
0

1

+ &) oo s 3 2
- Y(t)R FY(1) J Y "(s)f(s)ds, or A Ax = J G(t,s)f(s)ds
(o]

T
+ Y(t)R' (Eh(0) + Fh(l)) where

YORTFY(1)Y Le)A?  if s < ¢t
6(t,8) = N )
=Y(t)R FY(1)Y “(s)A T T N

To express Y(t)RT(Eh(O) + Fh(l)) + (I - ADA)E(t) in terms of an integral
operator we shall have to use delta functions. Let
apr Kol aap gap ~p~

= 1 y
ACt) = (I - APA) Y [AB]'B 6(1)(t). Then (I - A A)x(t) = J A(s - t)f(s)ds
i=0 o]

1 A
while Y(t)R*(Eh(O) + Fh(1)) = j Y(t)RT(EA(s) + FA(s - 1))f(s)ds. Thus
o

1 e 1 %
x(t) = J G(t,s)f(s)ds + f H(t,s)f(s)ds
o o

where G(t,s) is given by (8) and H(t,s) = A(s - t) + Y(t)RT(EA(s) + FA(s - 1)).
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4, TFUNCTIONAL OR DELAY EQUATIONS

In many applications involving linear processes, there are delay effects.
That is, the way the process changes is not only effeéted by the current
state of the system but also the state at prior times.

As shown in Chapter 2, the system Aé + Bx = f has many applications. It
is to be expected then that an understanding of

Ax(t) + Bx(t) = § C, (B)x(t - t,) + £(£) )
i=0 '

should also find many applications. It is the purpose of this section to
develop the basic theory of (l). For pedagogical reasons we shall take
only one delay, and a constant Co' The general case will be discussed at
the end of this section. Without loss of generality we may assume that

t > 0 and L 1. Thus (1) becomes
Ax(t) + Bx(t) = Cx(t - 1) + £(t) , ¢t > 0. (2)

First, let us review the situation if A is invertible. Then (2) can be

assumed to be in the form
X+ Bx=Cx(t - 1)+ £(t) , t>0. (3)

To uniquely determine the solution of (3) one must specify an arbitrary

initial function X, defined on [~1,0] which we shall assume is continuous.
Then there is a unique solution to (3), defined on [0,1),so that

x(0) = 50(0_). Continuing in this manner, given the solution exists on
[0,n], (3) has a unique solution on [n , ntl] such that §(n+) = x(n") and
the solution exists on [0 , n+l]. Thus for (3), a unique continuous

solution exists on [-1,2) for any continuous specification of x on [-1,0].
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We shall consider (2) under the assumption that MA + B is invertible for
some A. The behavior of (2) is different from that of (3). As to be

expected x can no longer be taken to be arbitrary on =1

| O o Y =0 14

Example 3.4.1 Take A = [O 0] S e e [1 0] s £ =0, so that (2)
becomes: &(t) + x(t) = x(t = 1), y(t) = x(t - 1). Then if x(t) = 1,

y(t) = 0 on [-1,0], there is no continuous solution to (2) since the second

+
equation requires y(0 ) = 1.

It is also possible to have continuous solutions only exist for a finite

interval.

Example 3.4.2 Take A = [8 (1)] ,B=1,C=1, f= [:igg:i{l and
x(t) = [zigggtg] on [-1,0]. The equations (2) are y + x = x(t - 1) + sin(nt)
and y = x(t - 1) + sin(wt). On [0,1], (2) becomes y + x = 0, y = 0, so that
the solutionis y = 0, x = 0 which agree at 0 with the initial conditions
on [-1,0]. oOn [1,2], (2) becomes y + x = sinmt, y = sinmt, so that

+ -
y = sinmt, X = sinmt - mcosmt. But then x(1 ) # x(1 ). Thus for the

initial conditions given, a solution exists only on [-1,1].

If in (2), f = 0, we get the associated homogeneous equation

Ax(t) + Bx(t) = Cx(t - 1). (4)

Clearly all solutions of (2) are of the form x + x. where x is a
L P

solution of (2) and x, is an arbitrary solution of (4). We shall prove that

h
(2) always has at least one initial condition for which (2) has a solution

on [-1,2). We shall then characterize all the consistent initial conditions

of (4) both for [~1,=) and [-1,n) time periods.
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Let {§n<t)}’ n > 0, {ﬁn(t)}, n > 1 be two sequences of infinitely
differentiable functions defined on [0,1]. gn(t) (respectively fn(t))
should be thought of as x (respectively f) on [n-1 , n]. As will become
clear during our proofs, infinite differentiability is a natural assumption
since the existence of solutions often requires at least some components of
x,f to be infinitely differentiable at the integers.

The system (2) now becomes

Ax + Bx = Cx + - f , The sl x given. (5)
—n -n =ni= i =q o) )

We seek to characterize those go(t) such that (5) has a solution {§2}§=

0
such that 5&(1) = §£+1(0).
From Theorem 1.3, for n > 1,
39 B e MU | 2 P D2 £ ) s %
zn(t) = exp(-A Bt)A Agn(O) + A exp(-A Bt) J exp (A Bs)[CEn_l(s)
0
= (6)
W Ee) e T A kZl [-a8P] 2P ™ ey + £ ™ (e)]
-n > GEl -1 =) -

1 ~1 s

o 2 ~ ~ =4 -1
where A = (M + B) A, B= (M + B) "B, C= (DA + B) C, fn = (M + B) jﬂ,

and k is the index of A. Since we need to manipulate this expression a lot,
B2 D2 e ; : ;
let P = AA, Q = A'B, and H = -AB . Note that P is a projection and P, Q, H

all commute. Thus we have

~ t ~ =
En(t) = exp(—Qt)Pxn(O) + ADexp(—Qt) j EXP(QS)[CEn_l(S) + ﬁn(s)]ds
k2l (m) o( ) e
m-De -~ (m 2 (m
+ (I - P) mZO H B [Cin_l(t) + gﬂ (e)].

Regardless of what x is, letting Px (0) = Px (1) makes Px continuous at
—n-1 - —n-1 =

n. The difficulty is with (I - P)x at n.
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That (I - P)gl(O) = (I - P)§ (1) gives

e
Cb et BB e R 8 } H'B
m=0

D (m)

[cX 0) + il(m)(O)]. (8)

We shall show that given f and any {g_(m)(O)}, m > 0 we can get a solution
by specifying Eo(m)(l)' Take (8) as the definition of (I - P)x (1). For

n>1, (I - P)En(t) = (I - P) z 1B [A (m)(t) + f (m)(t)] Thus the

requirement that (I - P)En(O) = (I - P)gn_l(l), n > 2. 18

(1 - P) z i3 ( =™ (0) - <mg<1>) -0 (9

¢ (m)

since f

= (mi(l), Viham= (075, 0 Ml I a1 s 7 AR B 2 o s et < B A B

(0)
En(r)(t) = (-Q)rexp(—Qt)Pgn(O)

A t ¥ ’
+ AP(-Q) Texp(-Qt) J exp(Qs)[Cx__,(s) + £ (s)]ds
o

&l (10)
d et A (li(t) - f 4 (o)
2=0
£ D) kil H"82(Cx ™) (o) + £ (M) 4y
i h-1 -n :
In particular,
2(-l(]'_‘)(o) L (—Q)ngl(O) & A z Or 1- 2[ (Z)(O) + f (l)(o)]
2=0
k-1 (1D
+ (-2 § #"81cx o) + £ 0],
m=0

Define §O(r)(l) = zl(r)(O), where El(r)(o) is given by (11). That an
infinitely differentiable function on [0,1] exists for arbitrary {g‘r)(O)},

(r)(l)} follows from [34, Lemma 13.1, p. 261]. Let zo(t) be such a
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function. We shall show that this is a consistent initial condition.
) y f (m) SIS
Given this §o, we have x) computed and by construction X, (1) = 31 0),

m > 1. Suppose then that we have XyreeosX and

x ®qy - 1(“‘)(0), A e T ) (12)

et

We shall show that we get a similar X By (12) we see that (9) is

e

satisfied. The definition of P§n+1 in terms of (6), the infinite

differentiability of f, and the induction hypothesis (12) applied to (10)
(m)

means that x <m)(0) so that the induction is complete. Thus

noWex

+1

we have proved the following theorem.

Theorem 3.4.1 If f is infinitely differentiable on [0,) and
{go(m)(O)} is an arbitrary sequence of numbers, and gﬂ(t) is any infinitely
differentiable function on [0,1] with these derivatives at zero such that
go(m)(l) is given by (1l1), then (2) is consistent and has an infinitely

differentiable solution.

Let C be the space of ¢"-valued infinitely differentiable functions on

[0,1] with the family of semi-norms pm(i) = sup ||£Km)(t)”. For any
O<t<l

integer n, let Cn be those initial conditions go(t) in C for which a

continuous solution to (4) exists on [0O,n].

Theorem 3.4.2 Each Cn is a closed subspace of C, Cn‘; Cn+1' The set of
consistent initial conditions Cc0 = ngl Cn is an infinite dimensional closed

subspace of C.

Proof Using (7) and (9) we see that each Cn consists of those X, €

whose derivatives at 0 and 1 satisfy n relationships. For example Cl
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k-1
consists of those which satisfy (I - P) z " B Cx (m)(O) (I - P)go(l),
m=0

while C2 consists of those x_ which also satisfy

(I - P) Z H s c (go(m)(l) - zl(m)(O)) = 0. That is,

o 0 !
S ALE 5 ) HmBDC{ X (m)(l) (=g PX, (1) + AP ) Qm—l—zCx (2)(0)
m=0 i 2=0 —o
k-1 3
+(I-P) § HQBDC (44m) (33 = 0

That Cn is closed follows from the continuity of evaluation of derivatives

in €. That Cn is infinite dimensional follows from Theorem 1. []

Example 3.4.3 Take A= 0, B=1I, C= 1. Then (4) becomes
x(t) = x(t - 1). Thus C1 consists of those x such that 50(1) = 30(0). But
if X € Cl’ then (4) has a continuous solution. Hence C1 = Cn for all

n > 1 and C_ is of finite co-dimension in C.

Example 3.4.4 Take, as in Example 1, A = [8 é] e L R B [i 8] z
=] £ o = = L
and x [z] so that the system (4) is z % ¥ Fenl OF Yy y z
and A The requirement for Cl is zo(l) = yO(O), and
yo(l) = yO(O) - 50(0). Note that if z,y are continuous at n, then z

is automatically continuous at n + 1. Thus the only condition is

e A e B

b e - BTSSR > 2, Clearly the requirement

yn(l) = yn+l(0) places a nontrivial requirement on the first n + 1

derivatives of y, so that cn+l g Cn for n > 1.

For Ax + Bx = f, the assumption that A + B was invertible for some
scalar X was equivalent to consistent initial conditions uniquely deter-
mining solutions. For the delay equation (2), the situation is more

complicated. The existence of A is equivalent to X and En uniquely
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determining x but that is different from x and f uniquely determining
—n+1 ) =

the X - Intuitively AA + B being invertible is a 'Markov'" type of property.

The state at "time" n + 1 depends only on the immediately preceding values

e £,
-’ n

Example 3.4.5 Let A=0, B=0, C= [é ?] so that MA + B is always

singular. The system (2) is X 1= —ﬁn. There is a unique solution,

namely -£(t + 1), and a single consistent initial condition X = £1 so that

consistent initial conditions uniquely determine solutions. Note that

Xht1

I

cannot be determined from X and En but depends on the future value

Example 3.4.6 Let A =0, B =0, C = [(1) 8] . If (I -C)f # 0, then (2)
has no consistent initial conditions at all. Let f = [—g] IS = [Z} s
Then y(t) = g(t + 1) and z(t) is an arbitrary function on [-1,®). Clearly
there exist distinct choices for z which agree on [-1,0]. Thus, in this

example, solutions are not uniquely determined by consistent initial

conditions.

The preceding examples illustrate several points. While the infinitely
differentiable initial conditions were the appropriate space for the general
problem on [0,»), if the reader is interested in existence on [0,n), then
only n(k - 1) differentiability is needed. Also, in the context of a
particular problem as low as k - 1 times differentiability of some components
of £ and X will suffice.

We assumed that C was constant. However, this was not necessary to
apply Theorem 1.3. 1If C is k - 1 times differentiable, then one may still

apply Theorem 1.3 to get a formula like (6) except that an_l(m)(t) is
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replaced by (E(t)zn_l(t))(m). Of course, in general one may need as much
as n(k - 1) times differentiability of C on [0,n) and infinite differen-
tiability on [0,®).

Similarly, the complication caused by several delays is that the
consistent initial conditions must satisfy derivative conditions at points

other than the end points. For example, consider
Ax(t) + Bx(t) = Cx(t - 1) + Dx(t - 3) + £(t). (13)

Initial conditions are now defined on [0,3]. There are different ways to

handle (13). One way is to take the zn(t) on [0,1], consider X X5 Xy
arbitrary and write (18) as Ax + Bx = Cx + Dx & ol Ofconrge, Af
-n =n “n-1 “n-3 -

the delays are not integer multiples of each other, then the computations

will be messier, but are in principle the same.

5. APPLICATION TO CONTROL PROBLEMS

To illustrate how one can use the results of Sections 1 and 2, we shall
solve the Basic Quadratic Cost Problem of Section 2.2. Recall that we had

the process

x=Ax+ By, t <tc<t, x(t)=x, x(t)=zx (1)
and cost
1 {F1
J[x,ul] = 7[ (Bx,x) + (Qu,u)dt. (2)
t
0

The necessary condition for a minimum was

%, 50 i & 10 1 0
ol lzt+ |0 =& -B|l|x|=T10}: (3)
u u 0

- R
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We shall first show that if (2) has a solution satisfying the boundary

conditions, then u must be an optimal control.

Theorem 3.5.1 Suppose that x, u, X is a solution of (3) and E(to) =X,

gﬁtl) = X;. Then u is an optimal control.

Proof To show that J[x,u] > J[x,u] for all x,u satisfying (1) is clearly
equivalent to showing that ¢(s) = J[sx + (1 - s)x, su + (1L - s)u] has a

~ A A

o S t % =
minimum at s = 1 for all x,u. Let JO = %—f (Hx,x) + (Qu,u)dt, J = Jlx,ul,
to
and J = J[x,u]. Then a direct calculation gives ¢(s) = 32(J - 2JO + J)
+ s(2J - 2J) + J. Since ¢ is quadratic in s it has a maximum or minimum at
s = 1 if and only if JO = J, or equivalently,
(C

t £ ~
[ ¢ (Hx,x) + (Qu,u)dt = f ; (Hx,x) + (Qu,u)dt. (4)

t t
0 o

However, 4(s) > O for all s so that if (4) holds there must be a minimum.
Using the fact that x,u satisfies (1) and ),x,u satisfies (3) it is
straightforward to verify that (4) holds. The details, which we leave to

the reader may be found in [11] or [16]. [:

Note that solutions of (3) satisfying the boundary conditions provide
optimal controls even if the differential equation (3) has non-unique
solutions for consistent initial conditions. Of course, in that case, the
optimal controls may not be unique.

A useful by-product of the proof of Theorem 1 is that

=

t
(o}

To simplify the solving of (3) rewrite it as

J[x,u] = -2(},x) L (5)

Aé+ B_z_=g (6)
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I - 0 Bl 32
where A = o ol B = B . Here I is 2n x 2n,

B, = » B, = 3 B3 = [B* 0], and BA =RE S (7)

Clearly (u + Bl)_l exists except for a finite number of u. Define
Qe B = Bl ) e @)
H 4 3 1 2

We now need the following easily verified result whose proof we omit.

Proposition 3.5.1 uA + B is invertible almost always if and only if

Qu is invertible almost always.

Assume that u, A, B are such that pA + B, QU’ u + Bl are invertible. Let

>

(uA + B)_lA, ﬁ = (pA + B)_lB. Then N , M , Z are defined by

A=
U
A 7 S T s R . B2 g
A=| M T , and A~ = # 3 [16, page 139] (this is
M 0 -uM I M N 2
u u Wy
> 9 N Dz 0
Exercise 1.7.3). Hence A B = L 2“ ,
“uyz 0
Tt
D
Lo =[N 7.
-A"Bt PALN .
e = Using Theorem 1.3 we see that the
M N D{e'[NuDZu]t =R
TR}
general solution of (6) is
D
i e_[Nu zu]tN Py 0
-A Bt D’ Lyl
e A A = D
D -[n "z 1t
M N “e i 0
TR
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From the original equation (4) we have that

D
A [N "z 1(t - t) A
= Wonk ONDN -5 s where A = A(t ), (9)
Uy e T
'}E' =0
and
A
e . (10)
= 3 5

Thus we have shown that

Theorem 3.5.2 If Qu is invertible, then the optimal control u is given

in terms of x,) by (10) if an optimal control exists.

While (9) gives[;t- explicitly, (9) and (10) do not give u directly in

terms of x. We now turn to this problem. Let

-in Pz 1¢e - 75 E (t) E,(t)
E(t)= e # NN = hive the B 6), 4 = L2374
2V Bty U e i

are all n x n matrices. Suppose that (3) has a solution. Let A(to) = -)—\o

A(t) A
Then T = E(t) ;0 . Note that this is possible if and only if
= =D,
A () A
o . D R o =0
x is in R(Nu NIJ)' Now E(tl) E(tl) = or
X, = EB(tI)Ao B E4(t1)§0. 11)

Once -)lo’l(-o are known, x,u follow from (9), (10), and (11).
On the other hand if (11) is viewed as defining X5 then from (9) x will

go from x, to Xy Thus we have established the following result.

el




Theorem 3.5.3 Suppose that QU is invertible almost always. For a given

X,»X, there is an optimal control that takes x from X, to x in the time

! 1

interval [to,tl] if and only if the equation (ll) has a solution Ao such

5 D
that| °|e RN °N ).
[t

—0

It is possible, under our assumptions, for x to be able to go from x to
b X
X, but not have an optimal control existing if (I - N "N ) = 0 A
=1 LR | 4 =l

satisfying (11), is inconsistent in Ao' We shall give a simple example that

illustrates this. It shall also serve to illustrate our method.

Example 3.5,1 Let H=1I, B=1I, A=0, Q= [é 8} be two by two matrices.

: 151 2 2 2
The process is then simply x = u, and cost is 'EJ |x1] + |le #+ 1u1l dt,
t

o
x = [xl,xz]*, u = [ul,uz]*. The system (4) becomes

0 % s R R % 0
x| + allxl=|o (12)
0 u I Ql |u 0

Since B is invertible, we may take p = 0 in (pA + B)_l. Multiplying (4) by

cen kAo
B =1 0 O0f gives
0 -1 0
0 ol [ A 0
o o]l |x] +|x]|=1|o (13)
0 -1 of|u u 0

It is straightforward then to get that the solutions to (13) are given by
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B 0 O] (£ - to) Q ED
= lo - o
x e 0 X, (14)
u -Q 0 0 u
— i 5

It is clear that for any XXy there exists a control u sending x / to X,.

But the x in (l4) only takes on values of the form [8] for scalar ¢. Thus

in order for an optimal control to exist, 50,51 must be of the form

c c
[00] 4 [01]. A look at the power series for the exponential in (l4) shows

that (14) is

¥ -cosh(t-to)Q+(I-Q) -sinh(t-t _)Q Q o offa
x| = —sinh(t-to)Q cosh(t—to)Q+(I-Q) 0 o vQ 8 X,
u —cosh(t—to)Q+Q —sinh(t—to)Q I -Q 0 0 u,
cosh(t—tO)Q -sinh(t—to)Q 0 AO
= —sinh(t-to)Q cosh(t—to)Q 0 X
L—cosh(t—to)Q+Q —sinh(t—to)Q 0 u,

c c
o e Lol= 2 ; = ?
If lc_o = [0 ] and ll l:o] , we see that t = to gives u QAO. Since

2"0 Q o 0] ) -2
P eR{|0O Q O e must have A =| ° , and then u_= =
= -0 0 =0 0

u - 0 0}
L Letting t = t1 gives ¢ = —sinh(t1 - to)!lo + cosh(t1 - to)co. Solving for
% , we have
0
cosh(t—to){cl—cosh(tl—to)co}/sinh(tl-to) -sinh(t—to)c0

0

]

as the optimal control. x can also be easily solved for if desired.
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We have arrived then at the following procedure for solving the original

problem. Given XX determine whether it is possible to go from X, to x

1 1

with an optimal control by solving (if possible) (11) for Ao such that

A
g A R(NUDNM)' If Ao is found, use the bottom half of (9) for x if x is

=

needed. Use (9) and (10) to get the optimal control u.

In working a given problem, it is sometimes simpier to solve (4) directly
using the techniques used in deriving the formulas as done in this example,
rather than try to use the formulas directly.

At this point, an obvious question is "What does Qu being invertible
mean?'" That is, "What is the physical significance of assuming the
invertibility of QH?" The answer itself is easily comprehended. The proof,
however, requires some knowledge about Laplace transforms and analytic
functions. The reader without such an understanding is encouraged to read

the statement of the theorems. From (7) and (8) we have

3 =l -1 -1
Q, = B, - By(n + B)7T B, = Q- BX(u + A¥)T H(u - A)” B. (15)

If Q is invertible, then Qu is almost always invertible since

lim (p + A*)'1 = 0 and lim (p - A)'1 = 0. If Q is invertible, then it is
o] Yoo

obvious from (4) that u can be solved for in terms of x,)A. Theorem 3 shows
that this can happen even when Q is not invertible.

We note without proof that

Proposition 3.5.2 If F,G are positive semidefinite r X r matrices, then

F + G is invertible if and only if N(F) N N(G) = (0}.

Of course, Qu is invertible almost always for real p if and only if it is

almost always invertible for complex p. Let u = is where s is real. Then
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(14) becomes QU = Q - B*(is + A*)_IH(is - A)_IB = Q

+ B*(-is + A)_I*H(—is + A)—lB. From Proposition 2 we have that Qu is
invertible almost always if and only if

{0} = N(Q) N N(B*(-is + A)_I*H(—is + A)_lB) = N@Q) N N(H”Z(-is + A)_IB)

= N(Q) N N(H(-is + A)_IB) for almost all real s. Thus we have proven that:

Theorem 3.5.4 Qu is invertible for almost all p if and only if

N@Q) N N(H(-is + o)L

B) = {0} for almost every real s.
We need a technical result on analytic (l)-inverses before proceeding.

Theorem 3.5.5 Suppose that A(+) is an m X n matrix valued function such
that Aij(z) is a‘fraction of polynomials for all i and j. Suppose also
that N(A(z)) is nontrivial for all z in the domain of A(:). Then for any
real number w > 0, there exists a m X n matrix valued function B(+) such
that

(1) Bij(z) is a fraction of polynomials,
(ii) R(B(z)) = N(A(z)) for almost all z,

(iii) The poles of B are integral multiples of wi, w > 0, are simple,

and

(iv) |[|B(2)]| = O(l/|z|3) as |z| » .

Proof Suppose that A(¢) is an m X n matrix valued function such that
Aﬁ(z) is a fraction of polynomials for all i and j. Suppose also that
N(A(z)) is nontrivial for all z in the domain of A(*). Let X be ann X m
matrix of unknowms Xij' Then AXA = A is a consistent linear system of at
most mn equations in mn unknowns. Denote this new system by EZ = B,

Z€ ™. Since the coefficients of EZ = B are fractions of polynomials,

. there exists a real number K such that all minors of E are identically zero,
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or identically nonzero, for Iz[ > K. Thus EZ = B can be solved by row oper-
ations (nonuniquely) to give a F(*) such that for |z| > K; AFA = A, the
entries of F(z) are fractions of polynomials in z, rank(F(z)) is constant,
and rank(F(z)) is the maximum possible (dim N(A(z))). Note that (FA)ij is

a fraction of polynomials for all i and j. Let z

l,...,zq be the poles of
FA. Let rl,...,rq denote their multiplicities. Let X be such that
r
||FA]l = 0(]z| °) as |z| > . Set a = rotr vt A + 3. Define
q o o
Blz) ={ 01 (=270 (z2—~4pu) '} (I = F(z)a(z)).
3=1 J p=1

Then B clearly satisfies (i), (iii), and (iv). Since (ii) holds for

|z| > K, it holds for almost all z by analytic continuation. [:
We can-now prove the following:

Theorem 3.5.6 The following are equivalent:

(a) There exists an 50,51 for which optimal controls exist, but are not
unique.

(b) There is a trajectory from zero to zero of zero cost with nonzero
control.

(c) Qu is not invertible for all u.

Proof Clearly (b) = (a) since J[0,0] = 0. To see that (a) = (b), let

A A

(x,u), (x,u) be two optimal solutions from X, to Xx,. Then there exists

A, so that (A,x,u) and (},x,u) satisfy (3). Thus (A - A, x - X, u - u)

satisfies (3) and hence is optimal by Theorem 1. But (x - 3)(t0)

]

= (x - 5)(t1) = 0 and u - u is not identically zero. That

J{x - x, u - u] = 0 follows from (5).
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Suppose now that (b) holds so that there exists x,u such that J[x,u] = 0,
x(t ) = 0, x(t;) = 0, and u is nonzero. Since J[x,u] = 0 it is clear from
(2) that Hx = 0 and Qu = 0. Extend x,u periodically to [-»,»] and replace
by t - to. Call the new functions X,d4. Thus HX = 0, Qi = 0, and
i= A% + Bd, t # n(t1 - to), n=0,%1,%2,... . Since § is bounded and
sectionally continuous on finite intervals, X is continuous, and X is of
exponential order, we can take Laplace transforms to get HL[E{_] =0,
QLldl = 0, and L[%] = (s - A) 'BL[@]. Thus L[§](s) € N(Q) N N(i(s - A)”'B)
for all s in some right half plane. By Theorem 4, we have QH is not
invertible for all u.

Conversely, suppose that QU is not invertible for all u. From the proof
of Theorem 4 we have N(Q) N N(H(u - A)_IB) e N(Qu) for u = it, t real. Thus
N(@Q) N N(H(u - A)—lB) = N(Qu) for almost all y. Now applying Theorem 5 to
Qu with o = 27r/(t:1 - to) yields a Bu such that QuBu = 0, and Bu satisfies
(i1i), (iv). But then QB = 0, and H(n - A)_lBBU = 0. Let ¢ be vector such

that Bugx_ is not identically zero. Denote Bug by ¢(n). Let

%(s) = (s - A)_lBi(s). Then we have that
BX(s) = 0, Qb(s) = 0, and %(s) = (s - A) 'Bé(s). (16)

Let x be the inverse Laplace transform of %,

le

the inverse Laplace transform

of . From (16) and (iv) we have Hx = 0, Qu = Ax + Bu, x(0) = 0, and

[

0,

t Q(O) = 0. Furthermore, _:_1 is nonzerd. Finally, since the poles of ¢(s) were
simple and multiples of 27ri/(1:l - to) we get that i,é are periodic with
period (t1 - to). [20, p. 188]. Replace é,ﬁ by x = x(t + to),

u = _ll(t +t ). Then x(t ) = x(t;) = 0, Jlx,u] = 0, and x = Ax + Bu. Thus

e = ). []
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It is possible to have Qu invertible almost always and still have nonzero
optimal trajectories of zero cost. Of course, the control u must then be

Z€ero.

Example 3.5.2 Let Q= I, A=1I, B=0, H=0 in (2) and (3). Then Qu is
invertible for large p since Q is. Clearly x = exp(A(t - to))g0 is a

trajectory of zero cost from to X, = exp(A(tl - to))zo. But u = 0 and

X
==

J[x,u] = 0. Note also if x, =0, then x = 0.

We will make no use of "controllability," and hence will not define it.
For the benefit of the reader familiar with the concept, note that the
invertibility of Qu is logically independent of the controllability of (2)

since for any choice of A,B, setting Q = I makes Qu invertible almost

always, while setting Q = H = 0 makes Qu 0

Note also that in Example 2, the pair (A,B) was completely controllable
and QLl was invertible. However, optimal controls only existed for certain

pairs X X Thus the assumption of controllability does not seem to

1
simplify matters if Q,H are allowed to be singular.
The method of this section can be applied, of course, to any problem

which leads to a system of the form (l). However, the block lower tri-

angularity of A made the computation of u from X,\ possible. Any problem

Ay )
which leads to a system of the form Az + Bz = f with A = Al o| can be
2
solved much as was (6), provided, of course, pA + B is invertible for some yu.
t
For example, suppose that the cost is given by J S (Hx,x) + (Qu,u)

£
e}

+ (x,a)dt where a € R". Then the right hand side of (4) has a = [a*,0%,0%]*

instead of the zero vector.
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Theorem 1.3 can be used to solve this nonhomogeneous system to get

ads + (I - AA")Ba + e

A T 7, afa
Bt J eA Bs D, 3D A BtADA_q.
t
o]

The integral can be evaluated by using Theorem l.4. For this problem, it is

important to know whether or not the cost is positive,

6. DISCRETE SYSTEMS AND APPLICATIONS

This section will consider the discrete analogue of Ai = Bx + f,
Ax = Bx = f . First we shall develop the basic theory. These results
—n+l T ‘

will then be applied to the Discrete Control Problem of Section 2.2 and the
Leontief Model of Section 2.5. Throughout this section n is an integer
valued variable and the matrices A,B are m X m. Not unexpectedly the

solution of the difference equation proceeds much as for the differential

equation.

Definition 3.6.1 For A,B € mem, fﬂ (> cm, the vector ¢ ¢ " is called a

consistent initial vector for the difference equation A§n+1

= Bx + f if
Sy

the initial value problem Ax 1T e S U T e IR
—n: R e T G

+1

solution {x }. The difference equation Ax = Bx + £ is said to be
—n —n+l =AY =y
tractable if the initial value problem Ax BRI oy L MGy S

has a unique solution for each consistent initial vector c.

Theorem 3.6.1 The homogeneous difference equation Ax = Bx A,B ¢ mem
e “n+l -
is tractable if and only if there exists a scalar X € € such that

(A + B)_l exists.

The proof follows the same lines as the proof of Theorem 1.2 except that
t
i i . : 5 n :
Eﬁi(t) e Xxi is replaced with zn(xi) Ai !Ai. The difference analogue
of Theorem 1.3 is
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Theorem 3.6.2 If the homogeneous equation

o S

is tractable, then the general solution is given by

aq  if n =0,

m

5T T, o=k
(A'B) q if n > 1,

5 =1

e o LT~ B3 hesed b= lhh st =1

B and A € € is such that (A - B)
exists. Furthermore, c € ¢" is a consistent initial vector for (1) if and

only if c € R(Ak), where k = Ind(A). In this case the unique solution,
AT 5
subject to X, =G is given by x, = (A"B) ¢, n > 0 The inhomogeneous

equation Ax = Bx + f 1is also tractable. Its general solution is,
-+l AR

forn > 1,

apr Danp ADn‘l Ap~ n-i-1. k-1 s
(AB) AAg+A ) (AB) _—(IAA)Z(AB)Bf ” (2)
i=0 i=0

X
s 1 §

where £, = (AA - B)_lf,, k = Ind(A), and g € Cm The solution x is
ik =i it -
independent of A. Let w = -(I - AA ) z (ABD) B f The vector ¢ is a
i=0

~

consistent initial vector if and only if c lies in the set {w + R(Ak)].

Proof Since (1) is tractable, multiplying by (XA - B)_1 and performing

a similarity gives, as in the proof of Theorem 2.1,

c 0 _T(IB P S 0 51(11)
= = (3)
(2) (2)
o nf|x? 0 T+n | fx
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Thus x(z) = (I + AN)_kax(2) = 0, x(l) = C_n(I = AC)nx (1), and the solution
- S T = el )

of the homogeneous equation follows. (2) may also be verified directly as

in the proof of Theorem 1.3. [j

It is interesting to note that the solution (2) for x depends not only

on the n + 1 vectors gﬂ,gd,...,gn, but also on k - 1 "future" vectors

£n+1’£n+2""’£n+k-1' When A is nonsingular,

kg TP RREALSE . e ge)
& = (A "B) g+ izo (A "B) A £i and X depends only on the past vectors
e

In many applications one has a difference equation holding for only a

subset of the X,

Theorem 3.6.3 Suppose that A,B are square matrices and there exists a

scalar )\ such that AA + B is nonsingular. Set A = (M + B)_IA and
1

A

B= (A + B)_lB, f = (M + B) f. Then all solutions of Ax,,, + Bx, = f.,
= b= =i+l o O s

i=0,...,8 -1 are given by

“D* P47 Ds ISl apa gop

AAx. = (-AB)'A"Ax + ) (-A B)'A"f, , and

=i o =i-g-1
2=0
(4)

N-i-1
T L AR ~D* AAT STy
(- &Rz, = (-AB)" (T - A R)x, + zzo (-AB") "B £, -

Proof Suppose there exists a X such that A + B is nonsingular. Taking

A A1 0 e B1 0 vy
a similarlity we get, as in (3), A =. 0 vl B = 0 B2 = zi = Xi .
s | & : k :
f, = , with B, = I - XAA,, B, = I - AM, M = 0. Then the difference
= hi 1 1 2

A 7 : g + z
equation is equivalent to the decoupled equations A1Ei+1 Blﬂi gy

1’ B2 are invertible, we get
1

2 hi - B, Mv..,. Thus

M!i+1 ek B2Xi = hi’ =0, N = Lt cSinee- A
B il T
T R N - gy AR
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i-1
o -1 i -1 ¢, -1
%7 (_Al Bl) o " QEO (_Al Bl) A1 Ei-l-l’
N-i-1
" -1 N-1 =1 2. =1
X - (-—B2 M) Yy + gzo (—B2 M) B2 hi+2' (4) now follows. [:

Discrete control problem

As an application of Theorem 2 consider the Discrete Control Problem of

Section 2.2. Recall that N was fixed, the process was X = Aﬁi + Bgi,

ol

i Oigin s g N =10 50 was specified, and the cost was given by
N
i=

Jlx,u] = Z (Hx,,x.) + (Qu,,u.,). Note that the terminal position is not
e i e i :

MII—‘

specified whereas it was in the continuous problem considered in Section 5.

Theorem 3.6.4 The Discrete Control Problem has a solution {gi}, {gi},

if and only if there exists {),} such that the sequences {x.}, {).}, {u.}
i =, == =1

satisfy
0 0 X4 -A 0 -B x, 0
—A% =
H A 0 Ai+l AF 0 I 0 Ai 0 (5)
—B%
f Zi+1 , 2 S 2
for i = 0,1,...,N - 1, with X given and AN =0, Uy = 0.
Proof Since Uy only appears in the cost and does not effect the {Ei}, Uy

may be taken to be any vector such that QEN = 0. Take Uy = 0. To see the

N-1
necessity of (5) consider J[x,u] + iZO (Ai, g = Ax, ~ BEi) and set Ay = 0.
N T e s oy AR T ;
Then = 1 where (2,,...,2 ) is to be
D swr v ) —1 =il
=], -

considered as a list of the n entries of 2z then the n entries of Zy» etc.

1)

Thus one gets by the usual theory of Lagrange multipliers that
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Hﬁi‘A*li'*‘?‘_i_l:Q, i=1a'-"NA" 1’
g+ dyy < 0,
; (6)
Qgi—B*z\,i=9, L= O sl = .l
Xivl Agi = Bgi =05 e 0 L SN =

is necessary. But (6) is equivalent to (5) since AN was taken equal to zero.

On the other hand if {gi}, {Ei}’ {Ai} satisfy (6), then one may show, almost

exactly as for Theorem 5.1, that J[sx + (1 - s)x, su + (1 - s)u],

X, = Ax, + Bu., i = 0,...,N - 1, has a minimum at s = 1. We omit the
§+1 = s
details. [_]

Unlike the continuous problem of Section 5, the control problem considered

here can have arbitrary X,

Theorem 3.6.5 Suppose that Q + B*(-uA* + I)_luH(p - A)—lB is invertible
for some scalar u (and hence for all but a finite number of u). Then for

every x there exists a solution to the Discrete Control Problem.
Y X%

Proof Given X , J[x,u] defines a ¢” function on RNm. Since J is bounded
N
2
below, it suffices to show that J[x,u] goes to infinity as ) HgiH does.
i=0

If Q is invertible, this is clear. Suppose then that Q is singular and

Q + B*(-—uA* + I)_luH(u - A)—lB = Q“ is nonsingular for almost all p.

Suppose for purposes of contradiction that there exists a sequence of control
N-1 9
Sequernices {u, -}, i= 0, N &= It v = 0;..., such that z I[u, H > o but
=l 420 it

J{x ,u ] is bounded.
Zri=r

We shall show that, in fact, {u. } is bounded as r > ». Since J[x ,u ]
T el

/2

is bounded, one has (Qu ,u ) is bounded. Hence Ql u is bounded. But
- o =y s —or

i %) =||Hl/2(Ax + Bu )Hz is also bounded. Then H1/2Bu is bounded
Bl —]r =200 —or =6
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since x = x for all r. But Q dis dinvertible for almost all u, so that
s e = u

U is bounded. Hence x,_ is bounded. Proceeding in this manner, one gets

It
N-1
Z llu‘ H2 is bounded. Thus J attains its minimum as desired. r_
gl =

We can now solve the Discrete Control Problem. Let Al = [I _O] 5

H
-A 0 —B =
= = = — B* = =
B, [0 Gl ,B 0 B],34 Qand z;, =| " [. Then (5)
i
Az 20 : 0
becomes . “i] £ = A (e e i Rl &
Qi u, 0 S
Zi+1 -
3 -1 -1 -1
Proposition 3.6.1 Let QU = B4 - B3Hu B2 = Q + B*(uA* + I) "H(px - A) "B

where u is such pA* + I and y - A are invertible. Then

uAl + B1 B2

B2 B4

is invertible if and only if Qu is invertible.

It is assumed from here on that (7) and uA1 ¥ B1 are invertible.

Multiply (5) by the inverse of (7) to get

N 0 z 2 0 z 0
Ziel Zy i A
" + 3 = y (8)
Mp 0 U —uMu I u, 0
with Uy = 0, AN =0, x, siven, uNu + Zu = I. But
D D
n 5 RD %0 SR ==
" " u u
= D2 , and =
M0 M N 0 % T L I
i T u u
ik R T S e Sl L R S et s L S S
H H H U (LI LR U M H
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By Theorem 3, all solutions of (8) are given by
T
z -N i 0 N DN 0
7d, U LAY =0
2 2
i M Nz 0 Wa Ay
= HU H U e
-1 N-1i
D D
-Z N 0 I -N'N 0
PE=—VE e EN
+
D
(LN +M) 0 M N I 0
U ou H LT 5
=

A solution (9) will satisfy the boundary conditions if and

only if

D D N D
z =N Nz + (-Z "N I -N N)z 10
z, LS ( 5 u) ( 8 u)—N’ (10)
D D N-1 D
= M N. = Gl N = M -Z N I-NM 11
u, WNi 2o (uu u)( i u) ( 4 Ll)z, (11)
D N D D
= (=N Z N N + (FE - Ni=N 12
_Z_N (_ u l—l) u ]JEO ( " U)EN, ( )
and
‘ Dy D N-1.. D D
0 =M (N LA sC=NE T N e - MN ¥ 13
3 u( H ) u( u u) p o =N L3
Recall that uNu + Zu = I. Thus NUD and Zu commute. Using (12), (13) becomes
+
-M (-N D)N 1Z NN DN z - MN D(-N DZ )NN DN z = 0. The preceding discussion
e RN il T THAGETE G i A et

is summarized in the following theorem.

Theorem 3.6.6 Suppose that Qu is invertible, that N > Ind(Nu), and X, is

specified. Then &0’ X are gotten: by solving
X X,

E-w2my 2l =0, ananPy| V| =
LRI BN L]
LS =

BatoN
-N "7
N 2

4> d¥
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Yo

X
The control sequence is given by u = M N K ;0 , and for i > 0 by,
WH A
i
w, =MN2%2 (nP2 )y °l- anx +M)(—ZDN)NiI(I—NDN)}_LN
-1 H U d = A Hu u uoH W 0
AT =

As mentioned earlier, one is probably better off to follow the steps in
the proof of Theorem 6 rather than try to utilize the formulas.

If the process is not completely controllable, and X, is a point that
cannot be steered to the origin, then Xy will be unequal to zero. A very
simple example is gotten by taking A = I, B = 0, and Q invertible. Then
Q 1is invertible. 1In this case, of course, one would get x, = x , and

H e L)
u, = 0 for all i.
L2 T
It is possible to have Q not invertible, the process not completely

controllable and Q still be invertible and our results apply. One may take

5 it ] S ) LR
A=0, B=H-= [0 0} and Q = [0 1] for an example.

In applications it frequently happens that Q is invertible. Unlike the
continuous control problem, the discrete problem can still give rise to a

singular difference equation when Q is invertible.

If Q in the Discrete Control Problem is nonsingular, then J R Q_ B*Ai
for i = 0,1,...,N - 1 and (5) becomes
-1
A X -A  -BQ B*|| x, 0
Ay Tl = v Bl N , (14)
—A%
nowf ] Le o Jlal Le

for i = 0,1,...,N = 1, and AN = 0.
A is invertible if and only if A is. However, there always exists a u
such that uA + B is invertible so that Theorem 3 can always be applied. The

The difference equation (14) has the advantage that one can work with

matrices 'that are 2n x 2n instead of (2n + m) X (2n + m).
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While N > Ind(A) was assumed in the statement of the theorems, the
assumption is not really necessary.. If N < Ind(A), one may still use

Theorem 3 to solve (5).

The Leontief model

Recall from Section 2.5, that the Leontief model of a multisector economy

can be written as B£i+l = R§i 5 gi’ i=20,1,...,N - 1. Applying Theorem 3

to this system gives:

Theorem 3.6.7 Suppose that AB + R is invertible for some A. Let

= OB+ ®)7'd,. Then

o>

B = (AB + R)_lB,

o

= i i S e B et
B’x, = [BD(1 - aB)1t Iy + ) [BD(I—AB)]’LBDd.
=L =0 220 wxit

-2-1 s

~pA
(I -8B B)_}gi

]

L@ - PN a - 8PByx,
N 1 (L&)

% =l ro s A
L T O R S
2=0

+

B)pri

DB) = 0 if & > Ind(B). Thus if the economy is more

Note that ﬁQ(I - ﬁ
than Tnd(B) time units from the terminal time N, in particular if the
economy is assumed to run for all time, we get,

k-1 3

(1= ﬁnﬁ)g. « ¥ [(1=AB)
S =0

P1*MEt - BBa, k= Tnd(B), an
That is, (I - BDB)Ei is determined by part of the demand in the next k - 1
units of time. We note in passing that an analogous behavior is observed
in backwards projection usihg the Leslie population model.

That X, should depend on future demand is not as odd as it sounds. It is
not totally unreasonable to imagine a situation where future demand can

effect current output levels. This would be particularly true if because of,

announced governmental policies, future demand levels were known.

7/i5)



Equation (17) shows an advantage of our approach. Previous methods for

As (17)

nonregular Leontief models required backwards iteration from R

shows this need not be done. For models with N large, (15), (17) could
represent a substantially easier method. Also, our method works equally
well for infinite time periods, in which case it would be easy to do an
asymptotic analysis of (15), (17). (See [2].)

Note also that from (15), (17), one gets an explicit characterization of

what X is. If N > Ind(B), then x(0) must be of the form

k-1

A » P g

BDBE.+ z [(1 ~ B)D]l 1Bl(I - BDB)Qi, b an arbitrary vector.
i=0 g

We would now like to examine in a little more detail our assumption that
AB + R is invertible. First we shall show it is weaker than the regularity
of Luenberger. 1In [10] Luenberger multiplies the Leontief system on the

left by an invertible matrix P (does elementary row operations) to get
(18)

where T has full row rank. He then shows (18) is regular if and only if

4 5% o 3
gl s nonsingular.
[

Note P(AB + R) is nonsingular if and only if AB + R is. Thus to show

that regularity is stronger than our assumption it suffices to prove that

T AT + G
If| |is nonsingular, then is nonsingular for some A. (19)
H H

7, K 01 I = k 5 L/X -0 AT + G = T+ G/X
Now [ H ] is nonsingular if and only if [ 0 {] [ ‘H ] = [ q -}
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g o A -
is. But [ HG/ ] =5 [;] as A > ®. Thus (19) follows since any matrix

L T
close enough to [H] must be nonsingular if [H] is.
Once it is known that our assumption is properly weaker than regularity,
it is easy to characterize regularity. Since B(I - BDB) = 0 if and only if

Ind(B) < 1, we have immediately from Theorem 7,

Proposition 3.6.2 The Leontief system will be regular in the sense of

Luenberger if and only if there is a X such that AB + R is invertible and

Ind(B) < 1.

7. EXERCISES
Il el B 3 Aé»+ Bx = 0 is tractable and A,B € szz are singular, then the only
solutions are constants.

2. TE - (RA + B)_1 exists for some A, then

TV ARG e SRR R AAD.

A->o0 A0
3. If XA + B is one-to-one, and N(3A* + B*) = N(A*) N N(B*), then all
. APt D2
solutions of Ax + Bx = 0 are of the form x = e A Aq where g is an
arbitrary vector.
4., Suppose MAA + B is one-to-one and N(XA* + B*).= N(A*) N N(B*). Then
Aé + Bx = f is consistent if and only if (I - (XA + B)(AA + B)+)£.= 0.
5. Prove that if A,B are hermitian, then (XA + B)+A, (MA + B)fB commute if
and only if there exists a X such that N(AA + B) = N(a) N N(B).
Furthermore, if X exists, then (MA + B)TA, (\A + B)+B commute.
£ nxn - + F
6. Prove that if A,B ¢ € are such that one is EP, (CC = C C) and the

other is positive semidefinite, then there exists X such that AA + B is

invertible if and only if N(A) N N(B) = {0}.
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10.

L1

78

Suppose that A,B € €™ are such that N(A) N N(B) reduces both A and B,
Suppose also that there exists A such that N(MAA + B) = N(A) N N(B).
Prove that then Aé_+ Bx = f, £ n~times continuously differentiable, is
consistent if and only if f(t) e R(AA + B) for all t, that is,

(AA + B)(AA + B)+£ = £f. And that if it is consistent, then all

solutions are of the form

= AP ER T
x = ADg7A B J’ A BSE (6yds
(o]

k-1

+ [(0A  BDA 2By DAl ¥ (=P AsPPele W
m=0
—ADﬁt ~D° D
+ A'Aq + [I - (3A + B) (M + B)lg

where A = (A + B)DA, é = (XA + B)DB, i = (A + B)D£, q is an arbitrary
vector, g an arbitrary vector valued function, and k = Ind(;).

Prove that if A,B are EP (CC = C+C) and one is positive semidefinite,
then there exists a X such that N(AA + B) = N(A) N N(B). Thus all
solutions of AéA+ Bx = f are in the form given in Excercise 7.

Derive an expression for the consistent set of initial conditions for

Aé + Bx = f when f is n~times differentiable and AA + B is onto.

. *
Solve Ax(t) + Bx(t) = b, A,B as in Example 1.5, b = [120]

. L el 13 4 S
Answer: xl(t) g i (x2(0) + 2x3(0)) 18 x2(0) X3(0) 5 t
x(t)=-ie2/3t(x (0) + 2x, (0)>-—x(0)+8 by 32 4t
D 9 3t 9
i liseior 13 4 10 _
x3(t) =18 (x (0) + 2x (O)) 18 x2(0) 3 x3(0) s t
Let d(X) = det(MA + B). Prove that the dimension of the solution space

of Aé + Bx = f is the degree of d(}).



4 The Laplace transform

1. INTRODUCTION
In many disciplines the Laplace transform is widely used. 1In this chapter

we shall show how
Ax +Bx=£f , A,pee " (1)

can be solved using the Laplace transform. For a vector valued function

g(t) let L[g] = J e-Stg(t)dt be the Laplace transform of g. Applying L to
o

(1) we get sAl[x] - A5(0+) + BL[x] = L[£], or (sA + B)L[x] = L[f] + A§(0+).

If sA + B is invertible for some s, then
-1 + :
Lix) = (sa + BY “(LIE] +2(0")). (2)

To analyze (2) it is helpful to have an expansion of (sA + B)_l. The next
section will develop that expansion.

By utilizing some of the ideas of Section 2, much of this chapter can be
extended to cover the case when A,B € men and sA + B is either one-to-one
or onto. That extension is left to the interested reader. This chapter is

based on the work of Rose in [61].

2. EXPANSION OF (sA + B) ™\

For applications involving the Laplace transform we need the expansion of

(sA + B)_1 for large s. It turns out to be slightly easier to first expand
2% nxn LR ]

(A + AB) for A near zero. If A,Be € and A + AB is invertible for some

A € €, then the elements of (A + )\B)_1 are rational functions of A. Thus,

for some r > 0 and 0 < Ik] < r, we have the Laurent expansion

9



@+ = T ok o #o0 (1)
=-v

M 5 xn ey
where the coefficient matrices Qk € Cn are independent of X and are

uniquely determined by A and B. The nonnegative integer v is also independ-
ent of X and uniquely determined by A and B. If v > 0, then (A + XB)-l has
a pole of order v at A = 0. When B =1, (A + XI)—I, which always exists in
a deleted neighborhood of A = 0, is often called the resolvent of A. Thus
(A + >\B)_1 can be considered a generalized resolvent.

In [47] Langenhop has characterized the Qk and v, however explicit rep-
resentations were not given. See also [35] for a similar development.

The main result of this section is

Theorem 4.2.1 Assume A,B ¢ Cnxn and (sOA + B)—1 exists for s, € C.
Then (sA + B)_1 exists for ls, > R for some R > 0 and the following holds

for |s| > R,

(sh + B)"! = (AP ) (AR et
k=0
2)
) aap Vol aap g =
+B(I-ALA) ) (-AB)'s (s A + B)
k=0

where A = (SOA i B)‘IA, R (SOA + B)_IB and v = Ind(A). (The second term

of (2) is zero if v = 0.)

Proof Let A = 1/s, and Ao be such that (A + >\0B)—1 exists. Since
e T 2y < A
A By AB', A (soA + B) l, BD(soA + B) ; and Ind(A) are independent of s, to
prove (2) it suffices to show that for small [A[,

©o

AR = ey =1y RealEyle
; k=0AA v-1 o (3)
+ 80 - AD) T nF@shk e+ 103)'1

k=0
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where now A = (A + XOB)_lA, B = (A+ XOB)_IB. As in Chapter 3, A, B, AD, 8P

all compute. Multiplying (3) on the right by (A + XOB) gives

v=1

Gaady L = A0 T R E ¢ Ay T nR@ynEl )
k=0 k=0
To prove (4), note that
70 T LA G N U I o e SE R 5)
B E T i e SR g el (6)

The second equality in (5) ~ (6) is easily verified by a direct calculation.

Since (I + >\ADB)_1 can be expanded in a geometric series (Neumann series)
D e e o k2D k,k
in a neighborhood of X = 0, we have A (I + AA'B) ~ = A~ ] (=1) (A'B)"A
k=0

which is the first term on the right of (4). To get the second term on the

right hand side of (4) observe that for any m,

m-1 £ . o
R L R R S R
k=0

Hence, taking m = v = Ind(A), we have

v-1

(=Y S =T ety B e R BT TR AR D o A8 )
; k=0
R -1.D ~~D d
Multiplying by A "B (I - AA") we find that
~12D i S B A L aape ok K, 22D, k, —k-1
2B = AR A NTCARY) R BCL =AY ) ()T RTY )
k=0

since (I - AAD)Av = 0. This is the second term of (4) and (2) follows.

Note that if v # 0, then the coefficient of 2~ is nonzero. []
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3. APPLICATION TO DIFFERENTTIAL EQUATTIONS

In this section we shall consider the initial value problem
AR HEBXIETE Eoy 0 <t <= x(0) = X (1)

where A,B ¢ Cnxn and x(t), f(t) € anl for all t. We will be interested not
only in the case when f is sufficiently smooth and X is a consistent
initial condition but also in the case when f may be only piecewise smooth
and X, is an arbitrary initial condition.
We shall assume that there exists an S, such that sOA + B is invertible.
Taking Laplace transforms of both sides of (1) we have
Llx] = (sA + B)_l(A_§0 + L[£]). Using the Laurent expansion (2.2) and (2.5)
gives
LY = APt # AP L (k. AULLED
" Y= (2)

PR v-1 5, A b
+ (1 - a9 T D@D s o + LiED)].

k=0

where f = (SOA r B)_IE,

We shall first show how the results of Section 3.2 can be derived from

(2). Suppose that f possesses v continuous derivatives which have Laplace

n y k-1 28 A
transforms. Then skL[£] = L[ﬁ(k)] + Z sk_l_lgfl)(O), I e R T
i=0
so that (2) becomes

L[x] = AD(SI + ADﬁ)—l(AEO + LBl
(3)
SR L E o | o I
4T — 2B T DR EHEY § e
k=0

where
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1 k-1

Tl gt V= A o - . ; ~
p(e) = (1 - AP T A + TSP o1 ax V. @
k=1 i=0

Now for L[x] to be the Laplace transform of a continuous function requires

that L[x] > 0 as Re(s) > @. But L[x] + 0 as Re(s) > = if and only if

p(s) = 0 and this will happen if and only if X, satisfies
D e ~apy V22 k, 22D k2 (k)
B(I - AA)|Ax - AB ) (L) (B )Y £V =0 (5)
k=0

IE X, satisfies (5), then p(s) = 0 in (3) and we may take inverse transforms

to find that

e D A D al =
x(t) = KaleT Btzo 5 [ A 4 t)fﬂs)ds
¢ (6)
Foph e k, 2D k2 (k)
+ (I -AA)B ) (-1) (AB) £ (t)
: k=0
which is (3.1.15) of Theorem 3.1.3 (allowing for the fact that (6) is
derived under the assumption that X has a Laplace transform). If x is to
be continuous at zero, x(t) - X, as t > 0 so that we must have
D) G DED ik Je AR Disken ()
x, = AL + (I-A0)B ] (-1)7(AB) £ (0). (7)
k=0

It can be shown that if (7) is satisfied, then (5) is satisfied. Thus {(7)
characterizes consistent initial conditions and if X, satisfies (7), the
unique solution is given by (6).

On the other hand, as described in Section 2, one is sometimes interested
in the impulsive behavior of systems.

So suppose that one has (1) with f possessing v continuous derivatives

which have Laplace transforms but with an x(0) that does not satisfy (7).
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This could happen if a circuit is assembled at time t = O from other
circuits or subsystems. Thus while Aﬁ + Bx = f may govern the dynamics for
e 5(0_) is determined by the state of the previous systems.
In this case, we have that x = x + x, where x is given by the right
reETR ST =0
hand side of (6) and the impulsive part, X, is determined by taking the

inverse Laplace transform of (4) so that

i BT A b* k-1 ; e
20 = A0 | a6 wax + T sV

k=0 i=0

When A is nonsingular, the solution of (1) is continuous if f is even
piecewise continuous. However, when A is singular, the situation is
different. The i(k)(t) terms in (6) will involve either delta functions if

i(k_z) is only piecewise continuous or perhaps more general types of

distributions then delta functions if E‘k—z) is not piecewise continuous.
£ (k=2) | : : ; PR )
I is not piecewise continuous, but L[f]s ~ > 0 as Re(s) > » for

some integer £ (L[f] has at most a pole at infinity), then the inverse
Laplace transform can be taken in (3) to again give x = R + X5 where X
involves 6(j) for j up to possibly k + 2.

For an extensive treatment of this impulsive behavior corresponding to
poles at infinity see Verghese's thesis [63]. It was Verghese that first
observed that our results on characterizing the consistent initial conditions
for Ag + Bx = f were actually a characterizétion of which initial condition
led to impulsive behavior and which did not.

We shall conclude this chapter by returning to the elementary, but
instructive example, of Section 2.3. Again consider a simple circuit
consisting of a constant nonzero voltage source E and a capacitor of

capacitance C. At time t = 0 the capacitor is shorted out. Let

-
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B if -t <0
h(t) = :
0if t > 0

Then the equation for the charge on the capacitor is

0q + = q = h(t). = (8)

In this case q has a jump discontinuity at zero and the current
i= & = ~CES§(t) has an impulse at t = 0. Suppose on the other hand that the
circuit also has a resistor R in series with the capacitor and at time t = 0

the short is across the voltage source so that the appropriate equation is

Rq + % q = h(t). (9)

In this case q is continuous for all time and i has only a jump disconti-
nuity at t = 0 and no impulsive behavior.

Since R # 0 in (9), (9) is, in our nomenclature, a nonsingular system.
On the other hand, since the coefficient of é in (8) is zero, (8) is a
singular system and is able to exhibit impulsive behavior. If R is small,
then the relationship between (8) and (9) can be considered a singular

perturbation problem.
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5 Singular perturbations

‘1. INTRODUCTION
As discussed in Section 6 of Chapter 2, singular perturbation problems arise

in a variety of applications. Consider

g
b

AI(E)E + Az(e)x + u,
(1)

£

Bl(e)§A+ Bz(e)l + u,

where Ai(e), Bi(e) are matrices, x and y are column vectors and € > 0.
System (1) may be considered as part of an initial or boundary value problem,
or the process in a control problem.

Basic to understanding (1) is the associated homogeneous system,

X = Al(e)§_+ AZ(E)X
(2)
qi = Bl(a)g + Bz(e)z
When € = 0 in (2), we obtain the reduced system
x = A (0)x + A, (0)y
(3) -
0- ‘

BI(O)§A+ BZ(O)X

Note that (3) is a singular system of equations. Sufficient conditions are
+

known [58] for solutioms of (l) to converge as € ~ 0 to a sclution of (3)

for t > 0. We shall present both necessary and sufficient conditions for

such convergence and in addition obtain an explicit formula for the limit.
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Equation (2) may be rewritten as

s S X
T = (A(e) + B(e)/e) 2t EL>50 (4)
S e
Al(e) Az(e) 0 0
where A(g) = , B(e) = .  The fundamental

0 0 B, (e) B,(e)
solution of (4) will be important in studying (l1). The fundamental

solution is

Xe(t) o CACE) HBCe) /et 2

Thus our first problem may be reformulated as follows: to determine
necessary and sufficient conditions for (5) to converge as e > O+ far t >0
and to find an explicit formula for the limit. We shall then develop' an
asymptotic expansion for (5) under these conditions. Then we shall discuss
the case when several different negative powers of ¢ are present. Finally

we shall consider more general singularly perturbed systems of the form,
A(e)x + B(e)x = f. (6)

In expressing our results, it will be convenient to have the following

D

notation. For A,B € €™ 1et [A:B] = (I - BPB)A(T - BB). Note that

P R] = T - 5B and 1 — RE)nie [BiB ]

e(A + B/e)t,

2. ; EXISTENCE OF LIMIT

Recall that a matrix A is called stable if all eigenvalues have negative
real part. A is stable if and only if eAt +0 as t > o, We need a
generalization of this concept. A matrix A is called semistable if A has
index 0 or 1 and all non-zero eigenvalues have negative real part. That A
is semistable if and only if eAt converges as t > «© follows easily from the

-

Jordan canonical form for A.
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Re, Im refer to real and imaginary parts of complex numbers. If I is a
set of complex numbers, then Rel = {Rel : X € £}. For sets of complex
numbers E,Zf we let p(E,Z') = inf{la - u'| A o RICEL

The following inequality concerning the numerical range, W(A), will be

needed:
0 <p, W) <]l - &)Y for » & Wea). (1)

To prove (1), note that W(A) is a compact set. Thus 0 < p(A,W(A))
= 4inf{| X = p| : uw € WQA)} = inf{(Ax - Ax,x)| : ||x|| = 1} since the continuous
function f(n) = |A - ul achieves its minimum on W(A). Using the Schwartz
inequality we get o(X,W(A)) < inf{|| (A - A)x|| : ||x|]| = 1}. 1Inequality (1)
now follows from Theorem 6.5.1 of [46].

For notational convenience, it is easiest to study (1.5) with A,B
independent of €. The more general case will follow quickly. The major

result of this section is

Theorem 5.2.1 Suppose that A,B are n X n matrices. Let

e(A + B/E)t.

Xé(t) = Then Xa(t) converges pointwise as € > 0+ for all

t > 0, if and only if B is semistable. If B is semistable, then

D
e(A + B/e)t % e(I - BB )At(I 8 D

lim BB ). (2)

>0

Before proving Theorem 1, consider the following example.

0 0 B o [k
Example 5.2.1 Let A = [0 21%] 5 Bi= [0 q] . Then Ind(B) = 2 so that

B is not semistable. By Theorem 1, the limit (2) will fail. to exist for

all t > 0. However,
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[e21Tit - 1]/2nie

e(A + B/e)t =
e21rit

so that a limit exists for t an integer. In studying (2), however, it is

of interest to know when (2) exists for all t > 0 and the semistability of

B is necessary.
We shall first prove the sufficiency of semistability.

Theorem 5.2.2 If B is semistable, then

(1 - maPyeACT - BBD).

D
A+B/e _ o(T - BB )A(I D)

BB™) (3)

Lim, e
+
>0

Proof Suppose B is semistable. If B = 0, then (3) is immediate. If B

is invertible, then (3) is known; however, it may also be proved by the
same techniques we use. Assume then that 0 € ¢(B) and B # 0.

Note that if T is any nonsingular matrix (independent of €), then

1

exp(A + B/e) = T_lexp(TAT~ + (TBT—l)/e)T. It follows that a simultaneous

similarity may be applied to A and B without affecting our results.

Assume then that B is already in Jordan form, B = diag(B,.,0), where B

112 11

is nonsingular and has its '"ones' on the subdiagonal and ReO(Bll) < 0. As

observed in Section 2 of Chapter 1, another similarity gives diag(Bll,O)
B
where ReW(Bll) < —B for some B > 0. Assume then B = 31 0 and
A A
A= ke 12 . B is now fixed.
A21 A22

To calculate the limit (3) we shall use the Cauchy integral formula

QAtB/E _ E%Z’ f S R (%)

CE)
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where C(e) is a contour containing o(A + B/e) in its interior. Therefore,
it is necessary to obtain information about o(A + B/e). The needed infor-
mation is contained in the following two Lemmas. The first is just the

Gerschgorin theorem for block matrices [27].

Lemma 5.2.1 For € > 0 and A,B given by (4), o(A + B/e) C G, U Gl(e)

0

where

~-1,-1
GO = {Z : ” (Z b A22) ” iHAQZH}’

St -1 1
Gy (e) = {z s |tz = Ay, - By /) P 2 (1A,

Let € > 0 be such that ZB; > lag I+ 1A, + la, Il + 1Al + 3.

Lemma 5.2.2 For 0 < € 2 ey there exist two circles CO and Cl(e) such
that GO is contained in the interior of C0 and Gl(e) is contained in the

interior of Cl(e). Furthermore, p(CO,Cl(s)) > 1 and ReCI(e) < —=B/e.

Proof of Lemma 2 Since ReW(Bll) < -B for some B > 0, it follows that

ReW(Bll/s) < -B/e. Thus there exists y > 0 so that the circle 61(6) with
center at (-(y + B)/e,0) and radius y/e contains W(Bll/e) in its interior.
Now using (1) and the triangle inequality it follows that for u € G1<E)’

p(u,w(Bll/e)) flell” +||A12H. Therefore the circle Cl(s) with center at

(-(y + B)/e,0) and radius rl(e) — W +|\A11H +‘|A + 1 contains GI(E) in

12
its interior and for 0 < ¢ ot ReCl(e) < -B/e.

Similarly one can show that for u € G, [u] <1|A21H +|tA22H. Therefore,
the circle C, with center at (0,0) and radius r, =|[A12H +i]A22H + 1

contains GO in its interior. Also we have p(CO,Cl(e)) = (y + B)/e - rl(e)

_.roil' E|
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For the rest of the proof of Theorem 2, assume that 0 < ¢ i H0 We

now proceed to establish (3). From (4) and Lemmas 1, 2 we have

eA+B/E = Io(e) + Il(e) where

1) = 5= J RATEREE QL T Sl
cO
Bide) = Zii J 86 = = B Tay,
¢, (e)
I
Consider (6). Let Z = el to obtain Il(e) = E%I A J ee(g - €A - B)_ldc
€, ()

where Cl(a) is the circle with center at (-(y + B),0) and radius y + ek,

k=|la; ]I+ ||A12H + 1. Thus

| i

||Il(e)H 5_%? 2m(y +'ek)e_B esup{“(g - €A - B) e él(s)}.
Since || (¢ = e = BY Y| = ||z - BY|| "t as e » 0, |[ ¢z - ea - BY L 1s

bounded independent of e for ¢ € Cl(e). Thus][Il(e)“ g_Me_S/€ for some

M > 0 and Il(e) + 0 as & ~» 0+.

Next consider (5), which may be written Io(e) = eA+B/EPO(€), where
Pallny o (= As=Bley tan
0 2mi % ;
CO
Since PO(E) is a projection which commutes with A + B/e, we have
Fy(e)
Io(e) = e Po(s) where

F (e) = (A + B/e)Py(e) = -2% J S D e
: c

0

In (8), let £ = ) to obtain

(5)

(6)

(7

(8)

(9)
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NG =.517 J (e = ek =B} dca= (¢ - eA - BY Laz  (10)

mi

il i
R S
Co(e) C (eo)

where Co(e) is a circle with center at the origin and radius er Since

0"

C(eo) does not contain any of W(Bll) we have

Lim Po(a) = E%; f (z - B)_ldc. Since B has index 1, Theorem 4.21

+
e>0 z
Coleg)

gives

D=1

(6~ By = =(T = R LR

£y = Byl (11)

Thus the integral may be evaluated using the residue theorem to obtain

D
Lim+ Po(e) =I-BB . In (9), let £ = €) to obtain,

e>0
s 17 SRR
Fo(e) 2 e o (¢ - eA - B) "dC
C..(e)
00 (12)
= 711,—1 = J %Hc L ek = BY) YeAle = BYTE # G - BY Sy
Co(eo)
chllElE= zann=l L oA L, )
Thus Fo(e =T f (z B) "A(z B) “dr + o7l J - (z B) "dz + 0(e).
CO C0

From (ll1) we see that the integrand of the second integral is analytic

inside C0 and the integral is zero. The first integral can be evaluated

+ 0

by residues using (11). Thus Lim, F.(g) = (I - BBD)A(I - BBD) = [A;B].
e>0 ;

Therefore,

Lim I(e) = Lim Iy(e) = e[A;B][I;B] = e[I;B]A[I;B]. £
+

e+0+ e+0

Completion of proof of Theorem 1 We need to show the necessity of semi-

stability. Assume that Xs(t) has a pointwise limit as & > 0+ for t > 0.
As observed in the proof of Theorem 2, we may assume that a similarity
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transformation has been performed on B so that B = diag(J,,...,J_,N) where
1 r

G(Ji) = Ai, o(N) = 0, Xi # Aj TE A F a3l Ai #0,i=1,...,r. In addition,
we may assume that W(Ji) is in the open left-half plane if Re)\i < 0, W(Ji)
is in the open right-half plane if Reki > 0 and W(Ji) N W(Jj) = ¢ if 1 #+ j,
IR oy Te ) et AO = 0 if the nilpotent block N is present. From [27]
and the same reasoning used in the proof of Theorem 2, for i = 1,2,...,r,
there exists Ae(i) € 6(A + B/e) such that lke(i) - Xi/sl g_Ki + di/a, where
K, and §, are constants.
ik i

First we show that Rex < O for A € o(B). Suppose that X € o(B) and
Re > 0. Then there exists A_€ o(A + B/e) such that Re >+ . Let ¢
; 3 (A + B/g)
be such that (A + B/e)p_ = Agos [[g ]l = 1. Then]le ¢l
=|le Eéﬁ” + o which is a contradiction.

Some further calculations are necessary before we can rule out the
possibility that ReAi =0, i # 0. Using [27], we can argue as in the proof

of Theorem 2 that for € less than some ¢, there exists contours Ci(e), Co(e)

0
which do not intersect such that W(Ji/eo) C Interior (Ci(e)),

' W(N/e) C Interior (Co(e)), c(A + B/e) C g Interior (Ci(e)), and

p(W(Ji/e),Ci(e)), p(W(N/e),C.(e)) are bounded independent of &. Thus each

Ci(s) contains only those eigenvalues of A + B/e that are clustering 'near’

i Fi(e)t
those of J./e. Then X (t) = Z e P.(e) where
i & e 150 i

P (e) = 5= J (A = A - B/e)7'd\, and F (<) = (A + B/e)P,(c)

C; (e
= 5%; J A(A - A - B/e)‘ldx. As in the proof of Theorem 2, it follows
€, (&)
that Pi(e) -1 - (Ai - B)D(Xi - B). Since Xe(t) has a limit for t > 0, so
F.(e)t
does Xe(téPi(e). Thus e has a pointwise limit for t > 0 for each i.
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We shall show that
F (e) = AP, (e)/e + G(e) + O\, - BT - O, - 13)]30i - B)1/e, (13)

where G(e) 1s continuous at zero.

Assume for the moment that (13) holds. We shall use this to show that we
cannot have Re)\i =0, 1 # 0, and that B has index 0 or 1.

Note that Pi(s) is idempotent and the last term in (13) is nilpotent, so
that Trace(Fi(e)) = uiki/e + Trace(Gi(e)) where My is an integer. Assume
that Reki = 0 and Im)\i # 0. Then there exists a p(e) € O(Fi(e)) such that

Re(u(e)) is bounded and |Imu(a)| + o, Let ¢(g) be an eigenvector of Fi(e)

corresponding to u(e) and assume||Q(e)H = 1. Pick a subsequence Qﬂek) s0

F.(e )t u(ek)t

that i(ek) converges. Then (e = Qﬂek),gﬂek)) = e converges for

all t > 0 which is a contradiction. Thus Re}\i <TPstE = s
Now consider (13) for i = 0. Since XO = 0 we have Fo(e) = Go(e) + Q/e,
where Q = B(I - BBD). Since Trace(FO(e)) = Trace(Go(e)), we must have that

U(Fo(e)) is bounded. Pick t; such that |Imo((G0(s) ak Q/e)tl)| 5_%-. Let Ln
(Gy(e) + Q/e)t,
be the principal branch of %n z. Then if e - Q we have
(Gb(i) o3 Q/E)tl
(Go(e) + Q/e)t1 =1In e + LnQ. However, if Q # 0, the left-

hand side cannot possess a limit. Thus Q = B(I - BBD) = 0 and B has index
Zero or one.
Hence it suffices to show that (13) holds for Theorem 1 to be proven.

let B =B - Ai, and T = eX - Xi. Then,

1 -1
(Fi(e) o )\i/e)Pi(e) =t (o Ai/e)(x - A - B/g) “dx
Ci(a)
; =Fllf £@-ea-mia,
Ci(E)
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where Ci(e) is a circle with center at the origin which does not contain

any nonzero eigenvalues of B. Hence as in the proof of Theorem 2:

X
A, 1 s Sl 8
Fi(s) Frr Bide) o J z(t A - B) "A(z - B)dg
CE:
1
1 7 e
+ Tni f " (t BY Tdx.
&

The first integral is a continuous function of & and the second can be

evaluated to yield B(I - BDB)/E. Thus (13) follows. [:

e(A + B/e)t,

8¢ ;3 THE ASYMPTOTIC EXPANSION

Assume that B is semistable. From Section 2 we have
exp((A + B/e)t) = exp(Fl(s)t)Pl(e) + exp(Fz(e)t)PZ(e) (1)

where exp(F, (€)t) = - [ S RTNED G ek i BT
c

N
() = 5y J (im B lad i
&5
o
contour around {o(B) U o(A + B/e)} \ {0}. Since

2 "small" contour around zero and C2 a

Fl(e) = E%I J y(y - €A - B)-lA(Y - B)—ldy, Fl(E) is an analytic function
C

1
of € and we may write

exp(F (DP () = | X (0" , e 0. @
k=0

From Theorem 5.2.1,
D D
Xo(t) = exp((I - BB )At)(I - BB). (3)

Letting T = t/e, we get
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éxp(Fz(E)t)Pz(e) = exp(er(e)T)PQ(E) = 5%;’ f exp(y1)(y - €A - B)-ldY,

%

C2 an appropriate contour around the nonzero eigenvalues of B but not

including zero. But EFZ(E) = f Y(y - €A - B)_ldy is analytic in € also

27l
~ C2
since Yy - B is invertible on CZ'
Hence
" k
exp(eF, (e)T)P,(e) = ) Y. (1)e . 3 (4)
2 2 ]

The series (2) and (4) are what are usually referred to as the inner and
outer solutions, respectively. To calculate the Xk’Yk’ first note that
Fl(e)Fz(e) = Fz(a)Fl(é) = 0 and both Fi(e) commute with A + B/e. Hence both

(2) and (4) are solutions of

g%—= (A + B/e)Z for t > 0. (5)

Calculation of X (t) Inserting (2) into (5) and equating powers of ¢

gives that the Xk(t) must satisfy the system of differential equations;

BX, =0, . (6)

BE SRR L SR W kB (7:K)

Note that Xo(t) given by (3) satisfies (6). To determine Xl(t)’ notice that

from (7:0),

BDBXI = BDXO - BDAXI RS exp([A;B]t)[I;B]. (8)

While from (7:1), and the assumption that Ind(B) = 1,
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[1;B]%, = [1;8]AX, = [AsB]X, + [I;B]ABDBXI. (9)

Now BDBX1 is given by (8), so that (9) gives

t
[I;B]Xl = exp([A;B]t) J exp(-[A;B1s) [1;81aB"B (-8 A)exp ([A;B]s) [1;Bds
0
+ exp([A;B]t)[I;B]Xl(O).

' That 1is,

X, (t) = -exp([A;B]t) f exp(-[A;B]s) [1;8]aB A exp([A;B]s)[1;Blds
: (10)
+ exp([A;B]t)[I;B]Xl(O) S0 exp([A;B]t)[I;B].

In the same manner, using (7:k-1) to get BDBXk and (7:k) for [I;B]Xk we have

t
X 4q (8) = exp([A;B]t) J eXP(—[A;B]s)[I;B]A[BDik % BDAxk]ds
0 (1)
. BDik = BDAxk + exp([A;Ble) [1;BIX, ., (0).

To complete the determination of the Xk(t) we need the Xk(O). From (2),

1 =1
i J (i =eA = BY i dy

) (0)e*
k=0 Xk

c
- 1 &5 J [ - B~ - 7l
=0 °
Hence
X (0) = 5= f [v-» 'l -»7lay , k2o, (12)

C

C a contour around zero containing nc nonzero eigenvalues of B inside. In

particular, XO(O) = E%I J (y - B)‘ldy = [I;B] as noted earlier.
C

»
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Since only [I;B]Xk(O) is needed in (12) some calculation can be saved for

k > 1 by observing that

(1330, (0) = (180 7 [ Lo - 7 ey - m7 ey (13)
¢
In particular,
[1:B]%,(0) = [1;B]A 50z J (v - 3"y lay = -[1;8]a8°. (14)
c

We shall show one way to evaluate (13) by computing two integrals we
shall need later. The same methods may be applied to (13) to give, for

example,

[1;8]X,(0) = [1;81a(8°AB" - (8*)°Al1;8] - [1;8]a(8™)°}.

Proposition 5.3.1 If Ind(C) = 1, then for small enough contours around

1 -1 -1
zero, 5= J y{y - C) "A(y - C) “dy = [A;C].

Proof By first performing a similarity we may assume C =’[c 0] ol &

A11 A12 e
invertible, and A = » Fhen
A1 492
el A0y 2. 14
3 -1 Yy =€) "A, (v - O (y = C) "A,
lyi=tE Ay = Gl = which
-1
Ayix. - ©) gl
integrates to Bk since (y - C)_1 is analytic at zero. [:
22

Similarly, it's easy to show;

Proposition 5.3.2 Suppose that Ind(C) = 1. Let C be written as [8 gJ .

Let B = [Bij], AN [Aij]’ i,j = 1,2. Then for small contours around zero
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1 1

B(y-C) "dy = - TS
et -1
A22B21C 21 12

5%; f Y(r-0) A0y
¢

Calculation of Y, (t) Since T = t/e, Z EkYk satisfies
w
k=0
Substituting the series into the differential equation and equating powers

dZ _
T (eA + B)Z.

of e gives the infinite system

<o
il

B k=0 ' (16:0)

e
]

Kk BYk + AYk—l s >

(16:k) can be easily solved iteratively provided the initial values Yk(O)

are known to give
=
Yk(t) = exp(Bt) J exp(—Bs)AYk_l(s)ds + exp(Bt)Yk(O) (17)
0

Note, however, that exp(er(e)T)Pz(e) = E%;> J exp(yT) (y - €A - B)_ldy
7 C

: exp (v [ (v - B 'al® .

= Z € m A] (Y sy B)_ dY‘

=0

(ot L

Thus

¥, (1) = 5 f exp(y1) [ (v - B) 1A1%(y - B) lay, (18)
C

C a contour around the nonzero eigenvalues of B but not including zero, and

hence

Y, (0) = 2 f [ - B AT - B ey (19)
@

27i

In particular, YO(O) = BBD and YO(T) = exp(BT)BBD. One cannot get a for-

mula simidar to (18) for Xk(t) which does not have an € in the exponential.
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If B is stable, then Xk(t) = 0 for all k > 0 and BD = B_l, so that our

results reduce to the known results. We summarize our results as follows.

\

Theorem 5.3.1 Let Xs(t) = exp((A + B/e)t). Then Xe(t) has an asymptetic
expansion for t > 0 if and only if B is semistable. Suppose B is semi-

stable. Then with T = t/e
o0 k [}
X_(t) = A X, (e) + ) ekYk(T),
k=0 k=0
and both series converge for all t > 0 for small enough €. The Xk(t) are

given by (3), (11), (12) and the Yk(T) by (17) or (18) and (19).

e(A + B/e)t,

4. 3 NONCONSTANT A,B

While A,B were assumed constant for notational convenience in Sections 2

and 3, the following more general theorem holds.

Theorem 5.4.1 Suppose that A(e) + Ao as £ + 0+. Suppose that B(e) is

right differentiable at € = 0. Let Xe(t) = e(A(e) & B(E)/E)t.

Then Xe(t)
converges pointwise for 0 < t < t, if and only if B(0) is semistable. If

B(0) is semistable, then

(o, + B (0);B(0) ]t
(1) 1im X _(t) = e [1;B(0)],
>0 £

(ii) Xe(t) converges uniformly on compact subsets of (0,%),

c(d4i) ie(t) converges uniformly on compact subsets of (0,®) to

: [A + B (0);B(0)]t
[a, + B(0);B(0)]e ° [1;8(0)].

Proof It is clear from the proof of Theorem 2.1 that it goes over
immediately to A(e) - Ao' Suppose then that B(g) is differentiable at

e = 0. Thus B(e) = B(0) + B (0)e + ¢(e) where ¢(e)/e +~ 0 as e ~ O+. Then,
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A(e) + B(e)/e = [A(e) + B(0) + ¢(e)/e] + B(0)/e and
A(e) + é(O) + o(e)/e > AO + B (0) which is the case just discussed. There

remains then only to verify (ii) and (iii). But if B(0) is semistable,

Fo(e)t Fl(e)t
then, Xe(t) =5 Po(e) + e Pl(a) where Re[U(Fl(e))\{O}] < 0 and

F, (&)t

Fole) » [A + B (0);B(0)]. Sincel|e : P (o) = O(e_Bt/

e) by (2.18),
both (ii) and (iii) follow. i

If A,B are analytic in e, the approach of Section 3 is easily modified
to compute the exponential's expansion. First observe that A(e) + B(e)/e
is of the form ;(e) + B(0)/e where A is analytic at zero. Thus we may
suppose A is analytic in €& and B is constant. Then Section 3 is modified
as follows.

If A(e) = z Aiel, then in (3), A is replaced by AO and (3.7:k) is
i=0

BXk+1 1 AOXk A Alxk—l A St LU Xo =X

K k > 0. (1:k)

k’ =

D e
(l:k) of course determines B BXk+l in terms of the lower Xk’ while
[I;B]Xk+1 is found by solving the differential equation obtained by
multiplying (l:k+1) by [I;B].
One may also get a formula like (l16) but the € power series for

©

Yy [ »vB)—lA(e)]k(y - B)_lek must be computed, which is straightforward.
k=0
The same holds for the analogue of (17).

Thus we would get, for example, that

XO(O) < L= b [1;B],
X €0) = = f (I + (v - B) "4 )(y - B) lay, and
1 2mi fo) ?
C
2
X, €0) = = f [T+ (v-B) 1A, + T (-B) 'a (yv-B)7lA, 1¢y-B)lay
2, 2mi 1 TS T 2-r 1
C
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The above integrals are easily evaluated as in the proof of Proposition

3kl

5. ADDITIONAL POWERS OF e; EXISTENCE OF LIMITS

In this section we shall be concerned with the existence and calculation of

limits of

(A(e) + B/e + C/Er + E/Es)t

Xe(t) T (1)

where s > r > 1, A(e), B, C, E are n X n matrices, and A(e) is right
continuous at zero.

Different powers of e may occur explicitly in the formulation of the
system. There is another way that they can occur. In Section 3 we

considered the exponential

J(AGE) + B(e)/e)e 54

where the A(e) were right continuous at zero and the B(e) were right
differentiable at zero. Suppose, however, that the B(e) were not right
differentiable, but rather had a Taylor expansion in er, r < 1o “Say,

& (1) r (2) :
B(e) = B(0) + B (0)e” + B (0)e + 0(e). For example, B(e) might be

J=
satisfying a Lipschitz type of condition. Then (1) becomes for § = ¢ r’

e(;(d) & B(l)(O)G—l % Bl(O)é_S) where s = (1 - r)_l > 1, and A(S8) is right
continuous at § = O.

Thus the results of this section may also be viewed as a direct
extension of Sections 2 and 4.

We shall calculate (1) first in the case when E = 0. The Ind(E) = 1 case

will then be handled. The method for calculation with more powers of ¢

should then be clear.
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m -r,
i . =

‘zl Aie )t )s 0 = r1 < r2 L rm’

1=

has a pointwise limit for all t > 0, then Reo(Am) < 0. However, if m > 2,

It is not hard to see that if exp<}

then the semistability of Am is no longer necessary or sufficient.

We begin with an important special case.

The E = 0, C semistable case

Theorem 5.5.1 Suppose Ind(C) = 1 and C is semistable. Let

(A + B/e + C/ 1)t
X (t) = e B o (3)
Then (3) converges for an r > 2, for all t > 0, if and only if [B;C] is
semistable. Suppose [B;C] is semistable.

(i) If r > 2, then (3) converges to

llasclsIBselle o r5:01P85¢]) (1 - o), )

(ii) If r = 2, then the limit of (3) is the same as (4) except a term
5 ;
-[[Bc"B;C]; [B;cllt (5)
is added into the exponential.

Proof Since the first part of the proof is like that of Theorem 2.1, we
shall omit some technical details. Suppose C is semistable. Then
o(A + B/e + C/Er) is contained in the ET}og of two disjoint open sets
Ql(e), Qz(e); Sup {Rek|l = Ql(s)} < Me € and Qz(e) contains zero and grows

as 0(1/€). Let Cl’ Cq be contours (depending on €) around Ql(a), Qz(e). Let

2y(e) = E%E’ J LA, T C/er)_ldk, (6)
¢

¥
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and

Thi P A = -1 :
Fi(e) = 5T f X(A - A - B/e C/Er) dx. (7)
&1
i
Then P, (g) = 25 (y - eTA = er_lB - C)nld = xe’. Hence
i 271 ¥. Ty Y . s
€
i

Pi(e) +<—l— j (y - C)—ldY so that Pl(s) > CCD, Pz(e) Sl CCD, since

27i
G
i
(A + B/e + C/ r)t Fl(e)t Fz(s)t
Ind(C) = 1. Also, e = = e Pl(e) + e Pz(s). Since
F (e)t F.(e)t
e Pl(s) + 0, it suffices to compute the limit of e . We shall

not worry about the y-contour around zero but note that once & is taken
small enough, the contour may be taken independent of €. The specific
contour will be omitted in what follows. We shall make frequent use of

the identity
ATV s, S e o i R ekl e (8)

which holds if pw - X - Y and u - Y are invertible.

i e st N AREC e -1
Now by (8) Fz(e) e J < (y -eA-¢ "B-2C) dy
e

- = f yI(y - e"a - ¥ 1p - o)Ay - 771B - o Hay 9

C
7 e e = r-lp _ ol

* 7m [ iz QPR I ST (10)

C
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We first compute (10); using (8) twice; Ty J~3% (v - sr_lB - C)_ldy
i Le
e Y 1l g e i il
= J s (y - ¢ B C) "B(y C) d&y + 0
¢
==l J Yy - r-o e By - o + (v - o7 By - o7y
27 €
C
1 r-1 -1 r-2 -1 2
S J Wilm~do TR = G e SRR = COE Ty
&
1mef o] -1 -1
Wt J y(y = C) "B(y - €) “dy.
16
Thus from (9), (10), and Proposition 3.1, we have for r = 2;
1 -1 -1 2
Fo(e) = 0(e) + [AsC] + 5= J Y(y - €) [B(y - €) "] dy + [B;Cl/e.(11)

If r > 2, we have

Fy(e) = 0(e) + (1 - cPOA - ¢°0) + (1 - POIB(T - 0 /e.

Applying Theorem 2.1 gives (4) from (11

Theorem 2.1 and observe that

=1

(12)

).

To see (5), use Proposition 3.2,

B12B22 L 0

c1s o=l ]
12 7]
0 0 B, I 0 -
0 0 0 0 [1;322]

I 0 0 o
0, “FERAE] 5 B OB
e 22721 21
0 0
fi g (B AR ]
21 12302
FI 0 0 0 e
0 [I;B22] B21 0 0

105



If r < 2, then (3) may diverge.

5 _ 81 =250 ;
Example 5.5.1 Let A= 0, B = [2 é] , C = [ 0 é] , and consider (3).

Then C and [B;C] are both semistable. But (3) will only have a limit for
i A Ty e ) s B C/er has an eigenvalue A(g) such that

Rel(g) = =, Note that in this example, (5) is nonzero.

The E semistable case

By taking B = 0, Example 1 shows that (2) can diverge if 2r > s. Accord-

ingly, we shall take r > 2, s > 2r. Assume E is semistable. As before it

i

- : 5 s
suffices to evaluate the following contour integral around zero. Let y = g\,

Then by (8), E%E'J Nir = Ble S bl v o E/es)_ldl

e
= 517 f—l- T NI L BN O G T e R T e
Ti s
€
€
toly= #5 Bt g BT ley
i S 0 S Al e e et L [A3E] + 0(e) (13)
Z2md s R .
£
@
Now again by (8),
1 LiYe s-1 s—r =1
i J % (s B B e e T M Y
=
(
1 X S aselmariieny o -1 e =1
Tri f i Gy — e b et Q= BRI S e it — i End (14)
i T S [ SOV I S (15)
27i S i

\
We shall compute (14) and (15). By (8), (15) is

106



S—2 "'l e -1 - -1 2
= J y(y - 7B - ¥7C - E) [B(y - °77C - B) '] dy (16)
C

s 1 S

" EYTERGY - B TRE By (17)

2mi

o J %»(y - €
&

The integral (16) will not matter since s > 2. (17) then becomes

. J Ly - - e -nT -7 B -

251
C
[(v - 2% - B L% %cy - )L + (v - ) Hlay
e =y -1 ‘} -1
o J s (y = E) B(y - E) "dy (18)
C
gs—r-l s-r -1 -1 -1
ey f (Y = HSSECASS B C (i 2 E) TR by 1=K Fedly (19)
K, C
es—r-l | -1 s-r -1 -1
A A TR oD e G R e el G ) T (20)
C
E2s—2r~l s-r -1 -1 s-r =1 -1
P Ergr e J Yy=e¥ fCoE) FC{y-Ey B Y= U C=E) C(y= E) Uidp (241
(6
Now (15) is
1 s <f 5= = :
T J ;%.[(Y Rl L R S e Lay

£

C

Sl A ST =1 =k
i oy J Zelyrs e o= BY e )y
c €
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2
=L J yePF Voe L aFTC < B HIC0 =) ) dy

C

Lo -ty - BNy (22)

E

+
[\]
EN
H
Gy

Observe that (18), (19), (20), (21) go to zero in €, so that combining
(15) = (21) gives Fz(e) is

s-2r

2
o) + szl + S [ yome-m ™ ay + L mim) + = [eiEl. @)
£

Theorem 1 can now be applied to (23) to yield the following result.

Theorem 5.5.1 Suppose that E is semistable. Suppose also that [C;E] is
(A + B/e + C/Er + E/Es)t
semistable. Then e converges pointwise for all

t > 0 if and only if [[B;E]; [C;E]] is semistable. Suppose [[B;E]; [C;E]]
is semistable.

1) Ifis >:2n, v°> 2, the limit is

JIASED; [G5E1T; [1B3E); [G3EDNE, (24)

where Q = [I;[[B;E]; [c;E]]I[T;[c;E]I[T;E].

(ii) If s > 2r, r = 2, the limit is the same as (24) except a term
D IS
([[B;El[c;E]"[B;E]; [C;E]]; [B3E]le (25)

is added into the expomential (24).

(iii) If s = 2r, r > 2, the limit is the same as (24) except the term

[ECDE;E]tisadded into the exponential (24). (26)

(iv) If s .= 2r = 4, then both (25) and (26) are added into the
exponential in (24).
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E = 0, C not semistable

From Theorems 2.1, 1 and 2, the pattern that the limit follows for
additional powers of € should be clear. We now turn to examine what
happens if the leading coefficient Am has purely imaginary eigenvélues or
does not have Index 1. Intuitively, one might expect that some Ar will
have to dampen the resulting oscillations. For simplicity of exposition
we shall examine the E = 0 case since as Theorems 1 and 2 show the E # 0
case often gives insight into the E = 0 case.

The first thing to notice is that even if B is stable and Reo(C) < O,

then (2) may not have a pointwise limit as the following Example shows.

Example 5.5.2 Let A =0, B = [_i _ﬁ] AT [g é] , and consider

exp((B/e + C/er)t) = Ze(t)’ where r > 1. Then Za(t> fails to converge as
€ 4—0+ forall t > 0 since B/e + C/er has an eigenvalue XE such that

Rel = + o,
€

0Of course, this example shows that in general a complex eigenvalue o of
C cannot be dampened out by B if Ind(a - C) > 1. However, even if
Ind(e - C) < 1, then a stable B may not be able to dampen out the oscil-
lations. To see exactly what the sufficient conditions are, suppose that
Reo(C) < 0 and Ind(a - C) = 1 for all a € o(C) such that Rea = 0. By the
same arguments as used in Theorems 1, 2, it suffices to characterize when

eF(E)t has a limit where

F(e) = —2—11;; J A(A - (A + B/e + C/Er))—ld)\, : 27)
C

-r y SHES e : .
C a contour around ge  whose interior is disjoint from the interior of the

contours around the other purely imaginary eigenvalues and the eigenvalues
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: 2 , -r
of negative real part. Note that the contours' centers move apart as €

£ . . -1
while their diameters grow as & .

Now let s = (A - ue_r)sr. Then (27) becomes

r-1

F(e) = 5%;— J £§i%l-(s = ok T s T (28)

A

C

~

C is a contour around zero. Let Ca =C - a. Then

F(e) = 5%;» J (s + a)(s - C)T'A(s - C ) Mds
c
XS = i 1
s (s + a)(s - c,) B(s - Ca) B(s - Ca) ds (29)

1

R A Ca)—lB(s - c)Hds + 0(e).

._.
Ey i e S

If r > 2, then exp(F(e)t) will converge by Theorem 2.1 if and only if

Bt

s 5%;- J fiv o e A Ca)_lB(s B Ca)_lds (30)

c

is semistable. But a slight modification of the proof of Proposition 3.1

gives

D

— . =L . - D .
Ba = [B,Ca] a[I,Ca]BC aCaB[I,Ca]. (31)

We summarize our discussion as follows.

Theorem 5.5.3 Suppose that Reog(C) < 0. Let {ul,...,ur} be those
o € o(C) such that Rea = 0. Assume that Ind(C - ai) s e Tl [ERITEG o

Then for x> 2

* (A + B/e + €/ 1)t
X _(t) = e & (32)
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converges pointwise for all t > 0 if and only if Ba defined by (31) is
i
semistable for i = l,...,r. If the limit exists, it is given as follows;

(i) If r > 2, then the limit of (32) is

i 1, . "
1£1e [I,Bui][l,cui]. (33)

(ii) If r = 2, then the term

D . - a D . . D D
{-[lB,c B 5,15 [B ;¢ 11 + (c B [T5¢ ] + [1;€ 1B C )B C,
(34)
+ (cD - [15¢ DB CDB[I*C I
o ) oo AR O
is added into the LEE exponential in (33), where
A = [A;C ] - a(cPA[Tic ] + [1:C JAcD). (35)
o gy o i o o

Theorem 3 follows from (29) - (31) by Theorem 1 once the integrals are
computed. We leave the proof to the interested reader. Details may be
found in [8].

. It should be noted that the stability of B in Theorem 3 is not enough to

guarantee the semistability‘of Ba‘

E1

Example 5.5.3 Let C = [8 9] , B = [”f ’é] , A=0. Then B is stable

since both eigenvalues are negative real. Also Ba for o = 0 is semistable

0 _1} which is not semistable

since it is zero. But Ba for a = -i is [1 0

since * i are its eigenvalues.
Note that in Theorem 1, 2, 3 one may repalce A by A(e) where A(e) is

right continuous at zero. Then A(0Q) replaces A in the limits.
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6. ADDITIONAL POWERS OF e; THE FULL EXPANSION

This section will discuss the asymptotic expansion of

exp((A + B/e + C/_x)t) ' : (1)

Necessarily we need that (1) have a limit as e - 0+, t > 0. Various
sufficient conditions are given in Section 5. We shall assume that C and
[B;C] are semistable. Our approach can be modified to cover other
sufficient cases. As observed in Section 5, the r = 2 case is slightly
more complicated than the r > 2 case. Accordingly, we shall consider only
the r = 2 case. The same approach works for larger r. As in the earlier
sections, we may assume, without loss of generality, that B,C are constants.
A is temporarily assumed constant.

From Section 5, (1) may be written as exp(Fl(s)t)Pl(s) + exp(Fz(e)t)Pz(s)

where exp(Fi(e)t)Pl(a), i = 1,2 satisfies

€ - (a+B/e +c/ed)z (2)

2 - a1 3 1 2 2 -1
Now e Fl(e) is analytic in € since Fl(e) =3 y/e " (y — e"A - €B - C) " dy

€
C a contour around o(C)\ {0} not including zero.
Let T = t/sz. Then
2 e n 2 =1 :
exp (e Fl(e)r)Pl(s) = Z Yn(T)e = | exp(yT) (Y- A-eB-C) dy. (3)
n=0 .
(4

The Yn(r) will be calculated shortly. From Section 5,
F,(e) = A(e) + [B;Cl/e. (4)

Note that [B;C] is semistable by assumption and the rest of Fz(e) is

analytic in e, Thus we are in the case covered by Theorem 3.1 and get that
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exp((A + B/e + C/ez)t) = Z X (t)en + Z ¥ (r)e“ + Z (t)e“, (5)
: n=0 ° n=0 ° n=0 °

T = t/ez, £ = t/e, and all three series in (5) satisfy (2).

The Y, (1) terms We may rewrite (2), using T = t/e2 as

-3

%% = (ezA + eB + C)Z. Substitution of Z Yk(T)sk gives
k=0
éo(r) = ¢ (1)
%l(r) = CY, (1) + BY (1) | (6)
¥ G0y =) ¥R ) A e R e 2

The equations (6) are easily solved to give Yk(T) recursively in terms of

Y,

k=1 and Yk—2 once Yk(O) is known. Alternatively, note that

oo

3 ekYk(T) = 5%; J exp(y1) (¥ - g ey C)-ldy
k=0 e

- 1 5k f exp(yD [ (v - ©) 7 (e + BYI*(y - ©) ay.
k=0 °

By equating like powers of e we get

Y )= 5%; f exp (Y1) (y - o) Lay,
C
Y (1) = 5 f exp(y0) [ (v - ©) 1By - &)ty
1 2mi !
¢
Y, (1) = 5ir f exp(yD[(y - A+ [(v - 7181y - 07 ay,
) :

and so forth.
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In particular, since Pl(e) = e Ym(O)em, YO(O) = ¢’ and
m=0

¥, (0) = “cPR[1;6] - [1:C1BC”. TNote that the Y, temms for (1) and (3.1) do

k

not differ in form until k > 2.

The X (t) terms As with (3.1), the Yk(r) terms are fairly easily

determined and the Xk(t) terms are the more difficult. Substituting into

©

(2) gives (EZA + B + C) Z Xk(t)sk = Z ik(t)sk+2. That is,
k=0 k=0

X =0 (7)
CX, + BX =0 (8)
CXpyp + BX ) + AX, = Xl(t) T KA (9:k)

Note that the projection [I;C] can be decomposed into two commutative

projections as follows,
[1;¢1(B5c1P[BsC) + [15€]0150Bs5C]]. (10)
From Theorem 5.1,
X_(t) = exp(([[a;¢];[B;¢]] - [[BC®B5c];[BsC1DO)[T30B5€)1(T5€]. (1)

Suppose then that Xi(t) is known for 0 < i <m - 1. We will compute

Xm(t). From (8) and (9:m-2) we have

—CDBXO iFimi= 1 (12)
Pox =
B D: D D
C Xm_2 -C BXm_1 - C AXm_2 i 0F B (12:m)

Now from (8:m-1) we get [I;C]BXm + [I;C]AXm_ = [I;C]).(m__1 so that

1k

- [1;Cc]AX - [I;C]BCDCXm. Hence

[1;c)(c;BIX = [T30)% _ m-1

1
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Br e D 1D N 0
(1;c1lc;BI7[CsBIX = [C3BIX ;- [C3BI7AX . - [C3BI"BCCX . (13)

D
Since C CXm is given by (12), there remains only to compute

[I;C][I;[C;B]]Xm. This term is somewhat harder to obtain. From (12:m),

[I;C]BXm+ + [I;C]AXm = [I;C]Xm. (14)

1

: S : ; D y .
But [1,c]Bxm+1 = [1;¢c]BfI;C]X + [I;C]BC CX ,;» SO that multiplying

m+1
(14) by [I;[C;B]] gives

[1;[c;3]][1;c]ncncxm+1+[1;[c;s1][1;c]Axm = [1;[csBlIT;C]X . (15)

Using (12), (l5) becomes

[15[c;B11[T5€]X = [T30C5B]1[T50]A%

(16)
DI
+ [I;[c;Bl1[TI;C]BC {xm_1 i AX ;3.
For notational convenience let W = [I;[C;B]][I;C]Xm. Then (16) can be
written as
W= [1;0c5B]1(150] (A - BB, + [13(c3B]IT5C1{ALCTCK, +
e i B 4
[c;B] [c,B][I,c]xm +BCX , - BCAX (17)
BCDB[chxm + [C;B]D[C;B][I;c}xm]}.
The quantity in the { } brackets in (17) is known since XO,...,Xm_1 are

known by assumption, and CDCXm and [C;B]D[C;B][I;C]Xm are given by (12),
(13), (17). Thus adding together (12), (13) and the solution of (17) gives

the Xm(t) provided one knows Xm(O) for all m.
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By definition, if vy = €A,

I X (0" = o1 fo—A@>—mew*ma—Pgw>
m=0
. (18)
=i e f [(v = (B3 A (v - [B5e) THav(T - P, (e)).
m= -
C
wﬁere
;(e) = 5%; J YAy = eZA - B - c)'lA(y - ¢B - C)_ldy
C
Pl 1 =1 -1 2
Aer A Yaly = SR =00 SREC =V
C

C a contour including only the zero eigenvalue of C, 6 a contour including

only the zero eigenvalue of [B;C]. While C,é come from different contours

in terms of A, after they are written in terms of y, they may be taken as
®

the same, and we shall do so. Let A(a) = Z Amem, and note that from

m=0

DarBsc] - [A;C)BCP. The other

Proposition 3.2, Ao =[A-g] = [BCDB;C] -C
Am may be calculated in like manner. Thus from (18) we may compute the

Xm(O). For example,

X (0)

a1 | - menTava - 2 o) = (imsclilzc]
c

and
@ = (Lyselle slic] + [xiclee®) + (~[8;c1PA0)[1;(8;0]] -

[1;08;¢)1a(0)[B;c1P)cPc
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The Z, () terms

Now (2) may be rewritten as %% = (ezA + eB + C)Z. Inserting the series

o

z Zm(t)em, gives

m=0
€z () =0 (19)
zZ (b = czl(t)‘+ BZ (1) (20)
Z(#) =cCz (1) +BZ () +4Az_ () , m>xl (21:m)

Note that ZO(O) =T ~ YO(O)-XO(O) and Zm(O) —Ym(O) - Xm(O) for m > 1.
- Thus the Zm(O) are known. From (19) CDCZ0 = 0. Thus ZO is given by (20)

as ([1;c]20) = [1;¢)82_ = [B;€]([1;€)Z ). Hence

z () = exp([B;clt)[1;C]. (22)

D

Now if Zm(t) is known for m < n - 1, then CDCZn(t) = C in_l(t)
D

-C an_l(t) - cDAzn_z(t) by (22:m-1) and [I;C]Zn(I) is given from (21:m)

as the solution of

. D
[[I;C]Zn(i)] = [Bscl[15¢]z (&) + [1;C]BC cz_ (1)
(23)

+ {I;C]AZn 0.

=1

Note that to solve (23) one needs only have {1;c)zn(0) and not Zn(O).

7. MORE GENERAL AUTONOMOUS SYSTEMS

The singularly perturbed differential equations of the preceding sections

were all of the form

A(a)i{_ = C(e)x + £. - (1)
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It is possible to rewrite (1) as e;é»= E(e)§'+‘£(a), where E is diagonal
which is the type of problem studied in Section 6 [34, p. 75]. That method
also required computation of certain series. We are interested in working
directly with (l). To analyze (l) it is helpful to be able to work with

the fundamental solution of A(e)é = C(e)x. If A(e) is invertible for

e > 0, Ee(t) = exp(—A—l(E)C(e)t)g(o), e > 0. If A(e) is singular, but
KEA(e) + C(e) is invertible, ge(t) = exp([(AeA(e) - C(a))—lA(e)]D

[ A = () A I (L A®) - C(e)) 'A(e)Jx(o). There is a difficulty
in working with these exponentialé that did not arise before. We shall

present a method for dealing with some of these difficulties by considering
(A + eB)x(t) = Cx(t) + £(t) (2)
and the associated reduced problem
Ax = Cx + £, (3)

We allow, A, B, and C to all be singular, though we require that A + eB
be invertible for small nonzero e. The equation (3) will have solutions
uniquely determined by consistent initial conditions if and only if there
is a A such that M + C is invertible. We will assume such a X exists so
that the solution of (3) is given by Theorem 3.3.1.

In analyzing (2) we shall work with

1

Xg(t) = exp((A + €B) Ct). (2)

Let A = (uA + B)_IA, B = (pA + B)_lB =T A, G = (AL B)—lC where u

is some scalar such that (pA + B) is invertible. Then

exp((A + eB)le) = exp((A + eB) lCo). (5)
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From Theorem 4.2.1

e e e oy : e W
(AreB) = ) (LA R AT T AT ) (~D) AR e T
m=0 m=0

(6)

where k = Ind(g) for 0 < 'E' <r, some r > 0. Thus (5) could be written as
g -r
exp(( ) Age A (NS S o R T (7)

i=1

If [I;A]AmBDC =0 form>1 (orm > 2), then £ = 1 (2 = 2) and the expansion

of (7) has been worked out in the earlier sections. Howéver, in general,
that approach becomes far too messy, so that we shall work with (5) directly
though (6), (7) will be useful. We shall also see that the determination
of the coefficients in the expansions necessitates working with an infinite,
rather than finite system.

We shall assume that one has detérmined that (5) has a limit as € > 0+
for t > 0. Our first goal is to write down an expansion. The second is to

compute it.

Proposition 5.7.1 Suppose that G(e) is an analytic matrix valued

function for 0 < |e| < €,s some e > 0 and that exp(G(e)t) has a limit as
£ > O+ for all t > 0. Then G(g) = Gl(s) + Gz(a), e > 0, where
6, ()G, (e) = G,(e)G, () = 0, 0(G(e)) = a(G,(e)) V 0d(G,(e)), a(Gy(e)) is

bounded as e > 0+, and max {ReX : X # 0, X € c(Gz(e))} + -® ag € > O+.

Proof We first show that exp(G(e)t) has a limit as e » 0+ for all t > 0,
then o(G(e)) §_Sl(e) ) Sz(e) where Sl(s) is bounded independent of & and
'Resz(e) + —», If this assertion is false, there exists Gy O+,X(ei) €
c(G(ei)) such that lk(ei)| + 4= and Rek(ei) >M > -», Let Qﬁei) be an
associated eigenvector of norm one. Taking a subsequence Qﬁej) such that

Q(Ej) converges, we get a contradiction of the fact that
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exp(G(ej)t)gﬁej) = exp(k(ej)t)gﬂej) has a limit.-for all t > 0. Thus
o(G(g)) g_Sl(a) U Sz(e) where Sl(e) is bounded independent of & and
ReSz(e) > —o,

Now let Cl(e) be a contour around Sl(s) U {A|(XA - C) is singular} and
Cz(e) a contour around Sz(a), ReCz(e) » —», such that their interiors do
not intersect. Such contours exist for e sufficiently small. One may

assume Cl(e) is independent of ¢.

sl

Define Gj(e) Lt J v(y - (A + €B) "C) dy.

27i
C. (e
J( )
That the Gj(e) have the desired properties follows immediately from the

functional calculus. [j

1 -1..-1
Let Pj(e) = J (y - (A+ €B) G)

Cj(E)

dy. The Pj(e), dra= L2 iare

commuting projections such that Pl(e)Pz(e) =0, Pl(e) + P2(e) = I. Now

P (&) = E%E’ J (v(A + eB) - GY Lk eB)dy
¢
1 v -1_.m m =
= 71 ZO [-(va - &) 81" (va - ©) (A + eB)dy.
m=

Hence P.(g) = z Q em, where Q = —lT (YA - C) lAdy and for m > 0,
1 m o 27i
m=0
Cl

1 1 1

B]m_l(yA—C)_ Bdy.

Qe T - J [-(vA-C) " 'BI™(vA-C) 1A + [~ (yA-C)~
c

> 4 = = . —
Since Pl(e) + Pz(s) i Pz(e) mzl Qme + (1 Qo)' We shall compute QO.

Let A= A -07ta, B= a-07"8, c= 0a-0)c, so that 24 - C =1,
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< g o L S e T
Then Pl(O) = Qo = [ (YA - C) "Ady = A'A. Now let
Cl
X(e,t) = exp(Gl(e)t)Pl(e). Clearly X is analytic in e for some lef < r so

X(e,t) = ) X (t)e". (8)
m=0 "
Let
g =1+ max{mﬂ(I - &AD)AmﬁDE # 0}. 9

Then if T = t/el, exp(sl(A + EB)_ICT) is analytic in e by (5), (6) for
,el < some € . Thus Y(e,1) = exp(eQ(A + EB)—lCT)PZ(E) is analytic in e

so that

Xl ) w iy ¥ (r)e™ (10)
m=0 "

Note that the series (8), (l0) both converge for le’ small, both satisfy

the differential equation,

(A + eB)Z = CZ (11)
and X(eg,0) = Pl(e), Y(e,0) = Pz(s), so that

Xm(O) = Qm for m > 0, Ym(O) = —Qm for m > 1, while YO(O) =1- Qo.(12)

Computation of the X (t) Since X(e,t) satisfies (l1), equating powers

of € gives;
AX = CX_ (13)

o CXm = me—l’

&

for m > 1. (l4.m)
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Now A is allowed to be singular so that (13) and (l4.m) are both singular
differential equations. They will uniquely determine solutions precisely
when there is a A such that XA - C is invertible. From Theorem 3.3.1

we have the following:
Theorem 5.7.1 The coefficients Xm(t) in (8) are given recursively by
~p* _~p~
Xo(t) = exp(-A Ct)A AXO(O), (15)

and for m > 1,
iy ey o fE |
Xm(t) = A" exp(-A Ct) J exp (A Cs)(—BXm_l(s))ds
& (16)
ek “~D.n>D_(n

+11:4) 7 DA™ () + exp(-APce)aPax (0).
asd) m-1 m

The Xm(O) are given by (12), k = Ind(A).

Computation of the Y (1)
£l

The Ym(T) turn out to be harder to get than the Xm(t). They are also not
computable, or at least not obviously so, by the techniques of Section 3.

Inserting (10) into (11) and equating coefficients, gives

AY (1) = 0 (17.0)
AY (1) + BY__ (%) = 0 T el (18.x-1)
AEORD SETOR R NG NS B0 (18.7)

Multiply every equation in (18) by (A + B)_1 and write (17), (18) as

AY (1) = BY(t). (19)
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If o = {ai} is a sequence of n, X o, matrices, let S(a) = S{al,az,...} =
S{ui} be the striped matrix.
o 0 0 ¥
ok Mt (20)
i e 1 e
Then in (19) A = ${A,B,0,0,...}, B = {6, /., C}, vhere 6, = 0 if i f ¢, and
612 =1if 1 = & and Y(1) = {Yi(T)}:=O' Equation (19) is to be viewed as an

equation involving infinite matrices and not as holding in some Banach
space (see [5]).
It is easy to see that no finite submatrix of M + uB centered on the

principal diagonal is invertible for any A,p if A is singular.

Proposition 5.7.2 A has a left inverse, A°. In fact A° may be taken as

% ! 2 3 S
N Lok ATLA ~ A AT\ A ~ ~ AR A I
A2 E O O I S e S P T PR oo
2 e iy % . T s R I
EAV B AP FALT TSRS R R, M LU et B B
S ~p |
AsAsne e A AP P oo . E .
| :
1 : " 4 o b
L ' J

o i & 3 i
Note that A~ is row finite since the 1EE~row has k + 1 + 1 nonzero entries,
k = Ind(A). Thus

st 3o SO
A°B = s(B AT T:AlCY). (22)

If Y(t) satisfies (19), then it satisfies i (t) - AOBX(T) = 0. Thus,

formally

Y = exp(AOBT)X(O). (23)
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Note that (23) does define a formal power series since (22) is row finite
(each row has a finite number of nonzero entries). In fact, (23) converges
element wise.

Now from our earlier discussion we know that there is a solution to (19)
and Y(0) is given by (12). It is not hard to see that since it exists,
the solution Y(t) must be given by (23).

Define for the sequence {ai}, the following sequences.

Ty Cop) e

nl n

£ os(o) =" Yo azayy

w2 itjen 3

o buyee L Bnaa et s e
i t+jHemn T3 K

Note that S(a) = S{le(a), ZZl(a),...}. Then it is a simple exercise in
matrix multiplication to verify that

LB 4 Opn _ -
(S(a)) = S{me(u), Zm+l,m(a)’ Zm+2’m(a),...}. Taking A'B = S(a) we thus

get
exp(A°Bt) = S(B(1)), _ (24)

where Bl(r) = exp(ulr) and, in general,

‘i’ [zrl-k, k+1(“)] 5
by k!

]

B(D) (25)

Thus we have

i
Proposition 5.7.3 Yi(T) = gZo Bl+1(T)YL(O) where Bz+1 is given by (25)

and YQ(O) by (12).
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There remains two technical details. One is the convergence of (25).

However, for a fixed r, the number of terms in I (a¢) is less than

r+k, k+1

(;:?) , which in turn is less than (r + k)r. Also, the norm of the terms

: E k+1 ;

in Zr+k,k+1 grows with k as (ma*HAiH) , since each factor of each term
1<j<r

is in {Al,...,Ar}. Thus (25) converges for all T.

We did not discuss it when developing Proposition 3 so as not to obscure
the general development, but there is one additional difficulty. The
preceding calculations use, quite heavily, the associativity of matrix
multiplication, which does not in general hold for denumerable matrices.
However A® is row-finite, and AO(Ai), (AOA)i 2 AO(AX), (AOA)X are all well
defined so that the products afe associative [39, Coyollary I-9]. Similarly
the row finiteness of A°B in (22) makes the series (23) manipulate as
desired. If A°B were not row finite one would have to consider the
possibility that ACB(A’B)? # (A®B)%A°B.

We may summarize the proceeding as follows.

Theorem 5.7.2 Let A, B, C be n X n matrices. Suppose that there exists
a X such that XA + C is invertible and a u such that pyA + B is invertible.
Let Xe(t) = exp((A + EB)-ICt). Suppose that lim+ Xs(t) exists for t > 0.
>0
'3

Then X (t) = Z X‘(t)em + Z Y (T)Em where T = t/e’,
= m m
m=0 m=0

L =1+ max{m|Am[I;A]BD& # 0}. Xm(d), Ym(O) are given by (12). The Xm(t)

are given by Theorem 1. The Ym(T) dre given by Proposition 3.

Nonconstant A(e), B(e) Now suppose that A,C are analytic in € and

consider

explhle)  Cle)e) (26)

125



Assume that A(e)—lc(e) has at most a pole of order £ at € = 0 and the limit

o oo
of (26) as € » 0+ exists for t > 0. Let C(eg) = 2 Cmem, A(e) = z Amem.
m=0 m=0
Apply Proposition 1 to G(g) = A(e)—lC(e) to get exp(A(e)_lC(e)t) =

exp(Gl(e)t)Pl(e) + exp(Gz(e)t)Pz(e). Let C1 be a contour including the

bounded part of c(A(e)nlc(e)) (@ {A[%AD - C0 is not invertible}. Then

ey = Z—Tlr; f (y - A(E)_IC(E))_ldY=ﬁ f (YA(e) - C(e)) lA(e)dy which
C C

1 1
is analytic at ¢ = 0 since on - C0 is invertible on CI‘ Now one must

©
compute the power series for Pl(e) = z Qmam. Note that
m=0

= bl 2 Sl e =
@, =B RO)y e o f (yA -C)) "dy = [(XAO—CO) A
c

1

D -1
o] [(a-c)) Al

Also by differentiating under the integral sign one may compute all of the

’ » 1 = i
other coefficients. For example, Ql et v - f (YAO - CO) Al(yA0 - Co) dy.
Cl
(-] (o]
4 -1 m m
Thus we again have exp(A(e)C(e) "t) = z Xm(t)e + z Ym(r)e and both
L m=0 m=0
series satisfy A(e)Z = C(eg)Z. The Xk satisfy for k > 1,
AX () +AX ,(0) + ...+ AX (E) =
(27)

Coxk(t) + Clxk—l(t) + 2 + Ckxo(t).

Since the Xk(O) are computable by our earlier comments and since XAO - Co

is assumed invertible, (27) uniquely determines Xk in terms of

Xk—l""’xo' Note that Xo is still given by (15) except Ao’co replace A,C
and the Xm—l(t) in (16) is replaced by —Ale_l(t) e —AkXO(t) +

]

Clenl(t) S e CkXO(t). To handle the Yk(T) we insert the series

Z b's (1')(-:In into A(e) o A sgc(e)Y to give
mo M % dt
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AoYQ—l(T) + AIYE—Z(T) 2, L s Ag—lYo(T) =0 (28)
T oad )
Ne e Ll C=Y oyl 8 >0}
S m 2+j-m =0 -1

Al

Rewriting (28) gives Ai' - CY = 0 where A = S{Ai_l}, Cr= S{O,...,O,CO,CI,..
As before A is not invertible.

At this point we encounter some problems which we have not been able to
completely surmount. If A has a left inverse which is row finite, or
some other appropriate property, then the rest of the solution proceeds as
before. However we do not know if, in general, A has a left inverse.

Such a determination would depend on the particular relationships betweén
the Ai's. We do point out that it is relatively easy to show that A is
probably one to one since A is one to one on the set of sequences which
grow as the iEE power of some number, The important thing to determine is a
row finite left inverse. 1In general, it is possible to have an invertible
matrix with a zero eigenvalue [39].

The asymptotic expansion of (2) is also treated in [45] under the same
type of assumptions we make. However [45] does not discuss sufficient
conditions. Whereas we find the appropriate initial conditions and actually
solve the infinite systems of equations for the coefficients, [45], in
essence, gives an infinite system and says this is it. [45] also makes no
use of the functional calculus as we do which makes determination of the

initial values and the coefficients much easier,
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8. SOME APPLICATIONS

The manner in which singularly perturbed systems arise was discussed in
Chapter 2. This section will show how the results of Sections 3, 4, 5 can

be applied to particular systems. Consider

é = Al(s)§ + Az(e)z
” (1)
ey = B, (e)x + B,(e)y
with the initial conditions x(0) = X s y(0) = ¥ and the corresponding
reduced system,
Xx=Ax+Ay
= 1= 2
(2)
9=B1§+le

5k -+
where Ai(e) > Ai’ Bi(s) > Bi for i = 1,2 as € > 0 and Bl(e), Bz(s) are

right differentiable at ¢ = 0.

Theorem 5.8.1 The solution (§€(t), zﬁ(t)) of (1) has a pointwise limit

Qi 0

B B

for t > 0 for all (x ,y ) if and only if B =
2D A o B

] is semistable. B is

B Bai=NRe, “TEIBYE

semistable if and only if B, is semistable and B 2 By 1

D
2 i

semistable, then (Ee(t)’ xﬁ(t)) converges to a solution of the reduced

problem. Let (x(t), y(t)) be this limiting solution. Then-

x(t) £ X

= e it gt 50 )
y(t) 5
X A1(E) AZ(E)

where A(e) = | | : If the B,(e) are constant, then (3) is
B, (0) B,(0) * .
D
(A.-A.B. B.)t i

x(t) e 122 1 w0) + 0((a,-4,8,8)t)A, (158, ]ty (0)

= ; (4)
2@ ] [ -8, Bx(t) + [1:8,1y(0)
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where 0(z) = (ez - 1)/z. All limiting solutions satisfy the initial

conditions
x0] Jo
BDB =
y(0) 0
Al(e) Az(a) 0 0
Proof Let A(e) = 0 0 , Ble) = Bl(e) Bz(e) . Then all
o] x(0)
i : e _ (A(e) + B(e)/e)t | =
solutions of (1) are of the form: Ea(t) = Xﬁ(t) e NOE
By Theorem 4.1, gf(t) has a limit for all X Y if and only if B is
_ o ofP 0 0
semistable. But o(B) = o(Bz) U {0}, and = D 2 R Thus
B1 B2 (B2) B1 B2

one can easily verify that B has index 1 if and only if 82 has index 0 or 1

and BZDBZBI = Bl' (3) follows from Theorem 4.1. Suppose then Ind(B) = 1

and the Bi(a) are constant. Let &(t) = O((A1 - A2B2DB1)t) where 0(z) has

- the power series expansion (e - 1)/z. Then

D
[ alay=ioB, cR i) 8 (t)A, [1;8, ]t

by e(Al'AzB
PRl

[A;B]t _

1

]

1

[}

i

[I;B]e 2DB1)t E 4 . (5)
i ~B, B &(t)A,[I;B,]t+[1;B,]

Theorem 4.1 shows that to describe the limits of gt,zi, we may assume

X
€ R([1:B]). Then BZDBZXO = —BZDBIEO’ x_ arbitrary and (4) follows

from (5). That (4) is a solution of (2) follows from the uniform

convergence of ge(t), iﬁ(t), zﬁ(t), ie(t) on compact subsets of (0,x). [:

Note that if B is semistable, then the solution of (1) can be written

O e[X(o),B]t[I;B] ol 4 o) + Ble)/e)egyD | Fol | oy | Fo
zt(t3 DAY T %o
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where the first term is the solution of the reduced problem (2), the
second term is the "boundary layer correction'" and E(t) - 0 uniformly on

[O,to] for every t > 0 as € > i

Nonhomogeneous equations

In considering a nonhomogeneous version of (1), we shall use control theory
terminology. (See Section 2.2.)

Consider the following system,

x = A ()X + Ay (e)y + Ag(e)u
(6)
ey = Bl(e)§ + Bz(s)z_+ B3(e)g
X n m r
where € is a small parameter. Here x € €, y€ €, u€ € . The Ai(e),
Bi(a), Ci(e) are analytic functions of € and XE(O) = Xi TOTe X = AR a6
The x, y represent the state of the plant and u is the control. All
matrices, and in particular, B2(0), are allowed to be singular.
The reduced system associated with (6) is
2 O o) o
X = A1§_+ A21>+ A3E
(7)
SR o) 0
0= BL§ + BZX_+ B3E

We shall examine the limit of solutions of (6). In all cases in which we
establish the existence of limits, they will satisfy (7) for t > 0 though
the initial conditions will no longer necessarily be satisfied. The process
(6), of course, is basic to a variety of control problems such as time-

optimal and quadratic-regulator.
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Solution of (6)

A (e) A,(e) 0 0 x
Let A(E) = 0 0 > B(E) = B (8) B (E) y 2 =[y] and
A3(E) 33 2 £,
C(e) = B.(c) Then (1) may be written as
3
z3 = (A(e) + B(e)/e)z + E_lc(e)y_ (8)

An elementary calculation gives that

t
2,© = [ em(@@ + 3/ - N o@ul)as
(0]

(9)
+ exp((A(e) + B(e)/e)t)z(0).

+ 5 .
We wish to determine when (9) has a limit as ¢ > O and what the limit is
when it exists. Note that both Theorem 2 and Theorem 3 provide necessary

and sufficient conditions.

Theorem 5.8.2 gi(t) has a limit as & » 0+ for every z(0) for some

control u(t) if and only if B(0) is semistable.

Proof Suppose gﬁ(t) has a limit as € +-0+ for every z(0) for some u(t).
Taking the difference of (9) for two different z(0) we get
exp((A(e) + B(e)/e)t)(gl(o) - 52(0)) has a limit as € > 0+ for every gl(O),
52(0). Hence exp((A(e) + B(e)/e)t) has a limit as € - O+. But by Theorem
4.1 this happens if and only if B(0) is semistable. Conversely, if B(0) is

semistable, then z_(t) has a limit for u(t) = 0. |

Suppose then B(0) is semistable. We wish to determine for which u(t) (9)
has a limit as € = 0. Since B(0) is semistable, it suffices to determine
for what u(t) the integral has a limit as e - Oﬁ Define Po(e), Pl(e) as in

the proof of Theorem 4.1 so that exp((A(e) + B(e)/e)t) = exp(FO(s)t)PO(e) +
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exp(Fl(e)t)Pl(e). Zﬁ(t) has a limit as ¢ -+ 0+ if and only if Pi(e)gf(t)
ut/

has a limit for i = 0, 1. But|[P1(e)£€(t)H = 0(e E) where y is any

number such that pw < 0 and p > Rel for all X € o(B(0)) such that ReX < O.

Thus to determine the existence of limiting behavior of (9) it suffices to

consider PO(E)Ee(t)‘ Now

15
Pl(e) J exp((A(e) + B(e)/e)(t - s)) C(g)u(s)ds
o

(10)
&
= J exp((A(e) + B(e)/e) (t - s)P, (e) —i—c(e)g(s)ds.
0
Since B(0) is semistable, exp((A(e) + B(e)/e)(t - s))Pl(a) = z Xn(t - s)en
k=0

where the Xn are given in Section 4. Let C(g) = Z Ckak. Then (10)
k=0

becomes

1 t © k+1 (t Kk
= J Xo(t - s)Cog(s)ds + E Z [ Xk+1—2(t - s)Clg(s)ds £ (11)
o k=0] 2=0 ‘o

(11) provides an explicit expansion of Pl(s)gs(t). Now (l11) will have a

limit, obviously, if and only if

t ;
JO Xo(t - s)Cog(s)ds SHE (12)

But Xo(t) = exp([A(o) + ﬁ(o) ;B(0)1t)[1:;B(@)] from Theorem 4.1. Thus if

+
B(0) is semistable, then (9) will have a limit as € + 0 if and only if

/7
J exp([A(0) + B (0)])[1;3(0)]003(s)ds = 0. (13)
(e}

Theorem 5.8.3 If B(0) is semistable, then (10) will have a limit as

4
e >0 if and only if

[1;B(0)]c u(t) = 0. (14)
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The limit, when it exists, is given for all t > 0 by

{od

J {Xl(t - s)C0 oA - s)Cl}g(s)ds

2 (15)
+ exp([A(0) + B(0) ;B(0)]t)[I1;B(0)]z(0)

Proof The first part of Theorem 3 follows from (13) by differentiating
with respect to t and then multiplying by exp([A(0) + B(0) ;B(0)]t). Since
Pz(e)gg(t) + 0:for > 0y as &~ O+, we need only compute PI(O)Eo(t). By
(11) and (13), this is r X, (£ - $)C_u(s) + X_(t - s)C u(s)ds +

o

exp([A(0) + B(0) ;B(0)]t)[1;B(0)]z(0) as desired. [ ]

Note that the limit satisfies (7) and the initial condition [I;B(0)]z(0)
and not z(0). It is also worth noting that we actually have the full
expansion of the inner solution of Ef(t)- The outer solution is also easily

gotten. From Section 4,
5 k
P,(e)exp((A(e) + B(e)/e)t) = ] Y, (T)e where T = t/e. (16)
: k=0
Thus if p = s/e,
Sl k v k
P, (e)z (t) = 1 (t-p)ec(e)u(ep)dp + ) Y, (1)e 2(0).
2 € k
o k=0 k=0
The Yk(T) are given explicitly in Sections 3, 4. Depending on the
smoothness of u one may get the necessary initial terms. In particular;
for fixed T,

e
1im+ Pz(e)gﬁ(er) = J YO(T ~ p)C(0)u(0)dp + YO(T)E(O).
e~>0 0

If u is analytic, and u(t) =

o~ 8

i
u,t”, then
el
i=0
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.}

T
k
P, (e)z (t) = ) y f Y. (t - p)C,uptdp + ¥, (D)z(MYeS. (A7)
PEATE k=0 | 444 ¥r=k = £p i 1= k

Note that the reduced problem (7) is not consistent for all controls.
Condition (14) is equivalent to saying that u(t) is an admissable control
for the reduced problem.

One could also consider systems with small parameters of different

orders, such as

S A (©)x + Ay(e)y + Ag(e)z + A, (e)u

ey = B (e)x + B,(e)y + B(e)z + B, (e)u (18)
2.
B

= Cl(e)§>+ C2(5)2.+ C3(s)z_+ CA(E)H.

For (18), one would use Section 5.
As another possibility, it may be that certain linear combinations of
derivatives may be multiplied by small parameters, so that one would

consider a singularly perturbed process of the form

(A + eB)x = C(e)x + D(e)u (19)
or, more generally,

A(e)x = C(e)x + D(e)u. (20)

The process (19) has also been studied in [45]. However, [45] does not
determine sufficient conditions and explicitly compute the expansions as we
do. No use of contour integrals is made in [45].

If one starts by assuming B(0) is semistable and [I;B(O)]Cog(t) =
then by performing the appropriate similarities, it is possible to get the

limit of (9) ‘existing without all our machinery. But this only provides =
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the sufficiency of the conditions discussed. To get the necessity parts of
Theorems 2 and 3 requires our earlier work.

While most authors when studying (6) assume BZ(O) is invertible, [41],
[60], the singular case has been studied by several authors, for example,
(58], [36]. Both [42] and [58] assume some type of semistability. Our
work differs in two respects from most previous work. Unlike [36], [58]
we derive necessary as well as sufficient conditions (admittedly in a
simpler setting). We also do not make the usual controllability assumptions.
Neither need we make the nonsingularity assumptions on BTQB of [56] or the
full rank condition on C,B, in [68]. Secondly, in [4] and [62] the entire
derivative in (6) is multiplied by & so that the reduced problem is not a
differential equation, but rather a functional equation. Finally, we
should point out our approach does not involve matching. By using contour
integrals, the exponential is broken into two terms and these terms are

computed separately. Our series actually converge to the indicated terms.

9. PRODUCTS OF EXPONENTIALS

The results and techniques of the preceding sections can also be used to
analyze certain products of exponentials. Since these results are not
directly related to the main topic of this book we shall omit their proof.
The interested reader is referred to [7]. These results generalize a
result from [25], which played a basic role in Ellis and Pinsky's analysis
of the Navier-Stokes equations [25], [26].

Kato in [37] generalized the results of [25] to a Hilbert space.

In this section we shall show how the results of the preceding sections

can be used to determine precisely when

1im+exp[(A + B/e)t]exp[-tB/e] (1)
e>0
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exists for n X n matrices A,B. In particular, we shall completely
characterize those B for which (1) exists for all A. The extension to

operators will then be briefly discussed. A matrix will be called simple

if it is similar to a diagonal matrix.

The basic result from which our other results follow is,

Theorem 5.9.1 Suppose that A,B are n X n matrices and B is simple. Let

. . S aqr s
{Xl,...,kr} = g(B) be the eigenvalues of B. Define PA. Tl [ (A B) dX
A G,
gl
where Cj is a contour with Aj in its interior and Ak for k # j in its

exterior. Then exp[(A + B/e)tlexp[-tB/e] has a limit as ¢ - 0" for all

t > 0 if and only if P APA = 0 for Re(Aj - Ak) > 0. The limit, when it

AJ K
exists, is
exp(tA ), A = ) P AP, . (2)
AEo (B)

As an immediate consequence of Theorem 1, we have

Theorem 5.9.2 Suppose that A,B are n X n matrices and B is simple.

Then exp[t(A + B/e)lexp[-tB/e] has a limit as e > O+ for all t if and only
R B By K

3 k
exists is given by (2).

= 0 for xj,x such that Re(kj - Ak) # 0. The limit when it

In a certain sense, the converse of Theorem 2 holds,

Theorem 5.9.3 Suppose that B is an n X n matrix. Then
exp[t(A + B/e)]exp[-tB/e] exists for all n x n matrices A for all t as
+
€ » 0 if and only if B is simple and all eigenvalues of B have the same real

part. The limit, when it exists, if given by (2).

Theorem 1 is of some independent interest, as the next example illustrates.
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Example 5.9.1

-1/e 1 1fe— 0O
1im+exp t| exp ) T (3)
&0 0 0 0 0
whereas
1/e 1 -1/¢ 0
lim+exp t | exp t (4)
>0 0 0 0 0

A 1 1 0 24500
fails to exist. To see (3) note that P_1 [0 é] A Po = [0 1] , and

a0 . 5 _ >
A= [0 é] . Since 1-"0AP__1 = 0, POAPO =0, P AP . = 0, we have (3) by

- -1
z X 0 1 | SR ¢
Theorem 1. On the other hand, in (4) again A = o ol ’ but P1 = o ol
Po = [8 ?] and PlAP(J # 0 so that the limit will fail to exist.

If B is a bounded operator which is similar to a diagonal matrix and the
eigenvalues of B can be isolated by contours, then Theorem 1 and 2 can be
easily carried through. Theorem 3 uses the finite dimensionality of the
eigenspace. One could, however, extend Theorem 3 to compact operators B
such that the closed linear span of the generaliéed eigenspaces for nonzero
eigenvalues was the whole space and A was an arbitrary bounded linear
operator. Note that this extension differs from Kato's in that he assumed

A compact and B self-adjoint.
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6 Nonautonomous systems

1. INTRODUCTION

This chapter shall be concerned with the differential equation

AX + Bx = £ (1)
and the associated homogeneous equation

Ax + Bx = 0 (2)

where x 1s a Gn valued function of a real variable t, and A,B are Can
valued functionsg, differentiable in t. A,B are both allowed to be singular.

There are essentially two distinct classes of problems involved here.

Type I. Describe solutions and consistent initial conditions for an
interval (tl,tz) on which the appropriate "structure' of the system, for
example the rank, index, or core-rank of some appropriate matrix, is

constant.

Type II. Describe solutions around a point to where the structure is

different from the structure dn a deleted neighborhood of to.

In the case when A(t) is invertible for 0 < {t-to| < 8, and A(to) is
singular, we have a Type II problem that has been widely studied. See, for
example, [28], [64]. 1In this case, the description of the solutions
involves series type techniques.

In Chapter 3, (1) was solved with A,B constant and XA + B invertible for

some scalar A. The solution involves a blend of reductions to canonical
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forms, and solutions of a nonsingular problém. This is an example of what
we are calling a Type I problem.

Type I problems in general have not been as well studied as some of the
Type II problems have. Type L problems are also more in keeping with the
spirit of this book and are the type we shall concentrate on. Of course,
the complete solution of (1) will eventually require the combining of the
information on both types of problems.

The definition of a Type I problem is intentionally vague. One of our

purposes is to investigate when (1) is a pure Type I problem. That is, can

be solved without having to deal with the '"turning point behavior" that
occurs in Type II problems.

We shall first investigate when (1) can be reduced to a constant
coefficient equation. We then consider the general nonautonomous problem.
Finally, we shall consider nonautonomous discrete equations. Since, in
general, useful explicit solutions to (1) are lacking even when A is
invertible, we should not expect to obtain such explicit solutions when A
is singular.

At this time a complete solution of the Type I problem is not available.
We shall present some of the basic theory and give two techniques that will

solve a large number of the more frequently encountered systems. ¢

2. REDUCTION TO CONSTANT COEFFICIENTS

Since (1.1) is much easier to solve if A,B are constants, it could be help-
ful to know when (1.1) can be made to have constant coefficients by a
change of variables x = Ly, L(t) invertible.

Theorem 6.2.1 Let A(t),B(t),f(t) be continuously differentiable

functions defined on an interval I. Then Ax + Bx = f can be transformed to
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Ey + Fy = £; E,F constant AE + F invertible, (D

for t € I by an invertible transformation x = Ly if and only if
(i) There exists a scalar A such that B + A - A is invertible on I,
and
(ii) A(B + XA - A)_l is constant on I.
BENC 2ad (11 Dol Sne Ay take L& a n k) e B m AR Nk A

and the transformed equation is
Cy + (I - AC)y = f. : (2)

Proof Let x = Ly. Then Ax + Bx = f becomes (AL)y + (AL + BL)y = f.
Suppose AL = E, (Al., + BL) = F are constants. Then AL + TA = 0 so that
AL = E, (B - A)L = F. If there is a A such that AE + F is invertible, then
(lh+ B — HL = AB + ¥ so that (1) holds, But L = (MA +B ~ &) “(R + F)
and AL = E so that (ii) holds. Conversely suppose that (i), (ii) hold. Let
e O 2 0A =AY dnd € om ACR A Ak 4RSS Thewtaloe £ and

ML + (8 - A)L = I so that (B - A)L = I - AC and (2) follows. [ ]

Note that 1f (ii) holds, then R(A) is constant.

Theorem 1 is strictly a singular result since if A is invertible, letting
L'-l be the fundamental matrix solution of _}5 + A_le = 0 will always give
i = 0. The idea of using x = Ly to transform to constant coefficients also

appears in stability theory, but additional restraints are put on L. See

[28].

Example 6.2.1 Let A(t) t] , B(t) = [0 0]. Note that XA + B is

(0]
singular for all X,t. For A = 0, B + XA - A= [O _3 is nonsingular for

-1
e L= Sk i el 0l
all t. Let L = [l t:l = [—l 0]. Note that AL = [0 O:I. Hence

L}
S
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Aé + Bx = f becomes [ ] [ ] =.filor, Cﬁ +y=£f. By
e st o

Theorem 3.1.3, the solution is y = + Cf. Thus x(t) = . -
tf, - tfz ot . i £
= 3 Note that in this example, Ax + Bx = 0 has only the
=ty
1 2

trivial solution.

Corollary 6.2.1 If conditions (i), (ii) of Theorem 1 are met, then

solutions to (1) are uniquely determined by their initial value at any
to € ]. Furthermore the set of consistent initial conditions at to is just
L(to)M where M is the flat of initial conditions for (2) given in

Theorem 3.1.3.

At first glance Theorem 1 seems of limited value since finding a X that
satisfies condition (ii) would seem difficult. The next result shows that,

in fact, one need only check one A for which B + AA - A is invertible.

Theorem 6.2.2 Suppose that there exists a A such that (i) and (ii) of
Theorem 1 hold. Then A(pA + B - A)_l = C‘J is independent of t for all u
for which pA + B - A is invertible. Furthermore CﬁCu, CE(I - uCu) are

independent of y.

Proof Suppose X satisfies (i) and (ii). Clearly Cu = A(LA + B - A)_l
is analytic in p for all p such that pA + B - A is invertible. Thus it
suffices to verify Theorem 2 for u such that pA + B - A is invertible and
I+ (u - \)C 1is invertible. Now A = C,(AA + B - &) = C (A + B - A)
= Cu(AA +B - A) + Cu(u - XM)A. Using the second and fourth of these
expressions gives (CX - Cu)(AA.+ B - A) = Cu(u - A)A. Thus
B g e Cu(“ - A)C,, or equivalently, C = (I + (u - x)cx)'lcx. Hence

A u u
D D

C ,C, all commute, so that

C‘J is independent of t 1if CA is and Cu, CA’ X
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clscu = [(IT+ (u- )\)CA)‘ICA]D(I + (u - x)cx)“lcA = clfcx. Also
e - MC) = (T4 (= NEICI - wC, (T + (u = V™

- P+ - e, - ue) = R -acy). [

While Theorem 1 does not require AA + B to be invertible for -some A, in

many important applications A is constant. For example, in the control

1 o3 A B c I
problem [0 0] [i] + [D 0] [§]= [Eil i [0 8] is constant.

Corollary 6.2.2 If A in (1) is constant, then (1) can be transformed to

(2) by x = Ly if and only if XA+ B is invertible on I for some X and

AQAA + B)—1 is constant.

Example 6.2.2 Let A = [1 t2 , B = e . Clearly XA + B is
Rk i

invertible for some A. But XA+ B - A = )A which is never invertible.

Thus (i) of Theorem 1 is independent of whether XA + B is invertible.

2
Example 6.2.3 Let A = [ﬁ z ], B = [g 8]. Then B + XA - A is always

singular. Thus by Theorem 1, the equation Aé_+ Bx = 0 cannot be transformed

to (1) by a transformation x = Ly. Let G = _i . Then multiplying

G 0 ¥

the equation in Example 1. Thus one can sometimes change to an equation of

Ag.(_+85=_qbyGgivesAé+B£=QwhereA= 3 t,B=[O O]Whichis

the required form by left multiplication by an invertible matrix G.

To date we have been unable to find a reasonably easy way to determine
from A,B when there is a G so that GAé + GBx = 0 satisfies (i), (ii) of

Theorem 1.

n

3. REDUCTION OF Ax + Bx = £ TO Ax + x = f

If the system cannot be reduced to constant coefficients as discussed in

Section é, then we shall show how to reduce the order of the system.
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Analagous to the situation in Chapter 3, it is helpful to first put the
system in a standard form.

This section is concerned with reducing, under suitable hypothesis, the

system Ax + Bx = f to the form Ax + x = £f. [A,B] in what follows in an
n X 2n matrix and never AB - BA.

It will turn out that rank ([A,B]) n is a natural condition to work

with. But before showing why we need a fact from linear algebra.

Proposition 6.3.1 Suppose that A,B are n X n matrices. Then the

following are equivalent.

n

(1) R(A) + R(B) = ¢,

(ii) rank([A,B])

n

(iii) AQ + B is invertible for some Q € ann'

Proof Clearly (i) and (ii) are equivalent, and (iii) implies (i) and
(1i). Suppose then that (ii) holds. Let {91’ T ’Em} be a basis for

L
R(B*) = N(B) and {_e_“l+ ,gn} a basis for N(B). Now {Bgl, s, ,Bgm} is

18t
i (=
a basis for R(B). Pick g 10 ++ 8 R(A) so that {Bgl, S Be b
. " n ; . e T
B>t »8,} is a basis for €. Define Qe, = 0 if i < M and
-[.
S s e % $ + = :

Qe, A £ if i > m. Then (AQ + B)e Be, if 1 < m and (AQ + B)e, £y if

i > m so that AQ + B is invertible. [ ]

The assumption that rank ([A,B]) = n is substantially weaker than AA + B
being invertible for some X since no restrictions (other than dimension) are

placed on N(A),N(B).
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Example 6.3.1 ZLet A = [% 8], B = i g Then AA + B is singular for
all X but AQ + B 1s invertible if Q = 0 .

Theorem 6.3.1 Suppose that A,B are ann valued functions, defined on the
interval I. Suppose also that rank ([A,B]) = n and rank (B), rank (A) are
constant. Let Q(t) be such that AQ + B is invertible. Define T by
T = Q% T(to) = I. Let x = Ty. Then Aé + Bx = f is equivalent to

. : 2 . -1 <1 T e | =1
Ay + y = f where A = (AT + BT) AT = T “(AQ + B) "AT, £ =T "(AQ + B) "f.
Conversely, if T is an invertible, differentiable matrix function so that

Aé + Bx = f becomes Ai + y = f with A,f,Q as above, then rank ([A,B]) = n.

Proof The only part of Theorem 1 that needs comment beyond referring to
Proposition 1 is the smoothness of Q(t). {91, it ,gm}can be taken as

2

coltimis of B B.  The {e ,gn} are columns of I - B B. 1If rank (B) is

—mt1’

constant, then B ds s shboth ed & is; (161 ]

It, of course, is quite possible for there to exist a Q(t) such that
AQ + B is invertible without either rank(A(t)) or rank(B(t))
being constant as the scalar example Q = I, A= [1 - t], B = [t] shows.
Note that if one is interested in local results, then one can take
Q(t) = Q(0) since det(A(0)Q(0) + B(0)) # 0 implies det(A(t)Q(0) + B(t)) # 0
in a neighborhood of zero.

As a special case of Theorem 1, we have

Corollary 6.3.1 If A(t)A(t) + B(t) is invertible on the interval I and X

is continuous, then Aé + Bx = f may be rewritten as Ai +y = i,

- t

A= (QA + B) 1A, by the change of variables x = exp(f A(s)ds)y.
0
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In what follows we shall assume that the system has been written as

e Liptie

1%

4. A OF CONSTANT RANK, - REDUCTION METHODS

~ A

For this section we shall consider Aé + x = f where rank(A) is constant.

~

The range of A is not assumed constant. We assume, for convenience, that

t, = 0. Our first approach is essentially that of Luenberger [51]1[52] with

minor modification.

By taking a time invariant similarity, consisting of a permutation of the

- % Al(t) Az(t)
variables we may assume A(t) = A3(t) A4(t) ¥ rank([Al(t),Az(t)])

= rank(A), and [Al(t),Az(t)] is of full row rank. Hence there exists a

; A, A < :
C(t), as smooth as the A, (t), such that A(t) = A =4 Thus Ax + x = f
i CAl CA2 o e
becomes
Algl + A2§2 + X = £I 5 (1)
CA]_El + CA2§2 t 2., i 5-2 s (2)

Multiplying (1) by -C and adding to (2) gives

=0t d X

, = £, - Cf ' (3)

1 2 e

Using (3) to solve for x, and substituting into (1), gives

=2

Ay + A(Cxy +cx) + £) - B - CE) +x) = F) or

(A +A'c]gl+[Aé+1]x =f -A

518y 2 x) = £ - AL, + A)(CE) + CEy). (4)

Thus the original system has been reduced to one of lower order equal to
rank ({A,B]).

Clearly, in general, Al + A2C may be singular, in which case, the process

may be repeated again provided [[A, + AZC]’ [A C + I]] has full row rank so

1 x
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that Theorem 3.1 may be applied again. However, in many cases Ay + AZC

will be nonsingular.

1t AC is invertible for t in some interval [0,b] if

and only if Ind(A(0)) = 1.

I S0 A A I 0 A+A.C A
1 2 Jistieiz 2

Proof Note that [_ ][ ][ ] = [ ]. Since
pe——— G = ¥ CA1 CA2 G i 0 0

[A1 3 A2C, Az] is of full row rank, A will be of index 1 if and only 1f

Proposition 6.4.1 A

Al oE AZC is invertible. [j

In certain special cases the invertibility of A1 s AZC is completely

determined by A

1
i Al A2
Proposition 6.4.2 Suppose A = on [0,b]. If A is hermitian,
CAl CA2
then Al + AZC is invertible if and only if A1 is.
& % % *
Procof Suppose A is hermitian. Then A2 = AlC = AIC . Hence

* * *
Al + A2C = Al + AlC C = Al(I + CC). But I + C C is invertible and

Proposition 2 follows. [j

We also note that many of our statements can be translated from state-
ments about blocks to statements about the original matrix by replacing
1"
Al + A2
invertible" by "rank (Al) = rank (A(0))."

C is invertible" by "rank (Al + AQC) = rank (A(0))," and "Al is

If it should happen that [Al o AZC’ Azé + I] does not have constant rank,
then one will probably have to deal with a Type II problem.

Luenberger does not first put the system Aﬁ + Bx = f in the form
Aé»+<§ = i, However, his approach may lead to a much more complicated

version of (3). Suppose rank(A) is constant and we operate on A,B instead

of A to get
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Then we have 3351 3 B452 = ;2 which is much more difficult to work with than

(3) unless B, is invertible.

4

The preceeding approaches use rank(A) or rank(A) constant. However,
it's not just that rank of A is constant that is important, but also the

behavior of the Jordan form of A.

0 0

Example 6.4.1 Let A(t) = [f 1]. Then rank(A) = 1 but there is an index
A e 1 ln|t|x :
change at t = 0. The solution of Ax - x = 0 is x(t) = o ° which has

an essential singularity at zero.

Thus Type II behavior can occur not only at rank changes of A but also
at index changes. We shall now point out another way to reduce a systems
order. While more cumbersome in that it involves more than just elementary
row operations, it sometimes works better than the first method.

G 6" C
Tet DOy e €7 o such that: P EAT = [1 Z:I, where @, € ¢,

0 0
C2 € aan—r. We assume that T is differentiable. Such a T requires only

the existence of n-r pointwise linearly independent, differentiable vector

~%
valued functions b -»b _ . such that Ei(t) € N(A (t)). The b,(t) are the

120"

last n-r rows of T_l. In particular, they will exist if rank(A) is constant

though it is not necessary.

Let x = T[E], z € Gr, we g T, Then Aé + x = f becomes

[0 o
Y
@]
[~
Jr

o
o
O
e
|€

5

Thus w = £_ and
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Cig F KL B Ry O RI0Z & £yom WoiRe ok lly 1= £t (6
R.. R
where T—lT = - % . Note that (6) has order n-r.
Ro1 By

It is instructive to consider an example that illustrates many of the
difficulties with these problems. Let Q(t) be a real analytic 3 X 3 matrix
valued function. Define T by T = TQ, T(0) = I. Thus T is also real
analytic and invertible for all t. Let A = T_lNT where N is a 3 x 3
nilpotent Jordan block. Thus the rank, index, and Jordan form of A are all
constant.

Let x = Ty. Then Aé + x = 0 becomes Ni'+ (I + NQ)y = 0,(which is (5))

Yy LA gy = oy o sl
i SR R B e L RS e
0o o oy, 0 0 1 |y,

Thus y3 = 0 and the reduced system (6) is

o 1lfy 1+gq q y
.l + 21 22 ¢ s 0.
g Qg LT T LR
Notice that the values of the qij are not restricted in any way, other than
as to smoothmess.
There are three possibilities.
(1) q5p = 0, 1 + 45, = 0, in which case Y1 is arbitrary and ¥y is

determined by §2 + (1 + qu)y 0.

1 8ap¥as "
(11) q4 =0, 1 + q4, # 0 almost everywhere, in which case y, = 0 and
¥ is either arbitrary or zero depending on 1 + COSE
Bl Yy =l s
(iid) 431 # 0, if which case Yiu» -(1 + q32)(q31) Yy and y, is
. "1
determined by y, + [q22 7 (L # q32)(q31) Y2] =0

-
.
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Note that 44y may have zeros in which case (iii) is a Type II problem when
written as q31§2 + [q3lq22 - (i + q21)(l + q32)]y2 = 0.

Thus even if one starts with A analytic, constant Jordan form, etc., on
some interval I, one should not be surprised if the procedures outlined
earlier lead to solutions on properly smaller sub-intervals.

A complete analysis then of Aé + x = f will involve not only the Jordan
connical form of A but also the structure of Q = T_lf where T is the
similarity matrix.

The next proposition, while of limited applicability, does point out some

interesting types of behavior.

2

Proposition 6.4.3 If N° = 0, then x is a solution of Né o= f A5 and

only if x is a solution of the algebraic system of equations,
Nx = Nf, (7

(N - I)x = -£ + Nf + Nf, (8)

Proof Suppose that Nx + x = £ and N> = 0. Then Nx = Nf and (7) holds.

Differentiating (7) gives

Nx + Nx = Nf + N

[rhe

©))

or Né =z ﬁ§_+ Ni_and (8) follows. Conversely, suppose (7), (8) hold.

Then (9) holds. Subtracting (8) from (9) gives Nﬁ + x = f as desired. [ ]

2
One curious consequence of Proposition 3 is that if N° = 0, then either
x + x = 0 has only the zero solution just like when N is constant, or

solutions may be multiplied by an arbitrary scalar function.
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Example 6.4.2 Let N = [iz = ]. Then x = ¢(t)[l} satisfies Nx = 0,
R t

(I—l‘:l)_)g=g.

4
Example 6.4.3 Let N [fi Et}' Then N(N) is spanned by [i] while

N(I - ﬁ) is spanned by [ﬂ . Hence Ng + x = 0 has only the zero solution.

Note that the N of Example 3 is just the transpose of the N of Example 2.
It is easy to determine when a solution of Ax + x = 0 may be multiplied

by a scalar function and still be a solution.

Proposition 6.4.4 Suppose x is a solution of Aé + x=0on [a,b]. Then

¢x is also a solution for some ¢ € Cl[a,b] such that ¢ # 0 almost everywhere

if and only if x is a solution of the algebraic system
Ax = 0, (I-Mx=0 (10)

Proof Clearly if x satisfies (10) so does ¢x, and if x satisfies (10),
then x is a solution of Aé + x = 0. On the other hand, if x, ¢x satisfy
Ag + x = 0, then Aﬁ + x =0 and A($§ o &5) + ¢x = 0. Hence $A§ = 0, so

that Ax = 0. Thus A§_+ A§ = 0 and (10) follows. []

We close this section with two final examples.

t 1 0 %
Example 6.4.4 Let N(t) = 0 0 1| . Note that N(t) = L—lNL where
—t3 -t2 ]

T 4@ 30 -1 1202 LG e (3 0]
L et [ e o 1 e o = |-t 1 O, N=]0 O 1|. Thus N is nilpotent of

t2 £ 0 -t 1 0. 00
index 3 for all t and has constant rank. There are no nontrivial solutions
of (10). However, the solution of Né + x =0 is X =t {8 X, = x2(0), Xy =

-txZ(O). Thus solutions are uniquely determined by consistent initial

conditions.
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—t2 . Note that this N is just the
Pl
transpose of the one in Example 5. Then all solutions of Nx + x = 0 are of

Example 6.4.5 Let N(t) =

O = It
e 6

4 3,T
the form x(t) = C[ts,t ,2t7]7, C an arbitrary constant. Note that solutions
to consistent initial conditions are not uniquely determined by the initial

conditions at t = 0, though they are for t # 0.

5. NON-AUTONOMOUS DISCRETE SYSTEMS

Of course, in many applications involving discrete systems the coefficients
may be non-autonomous. For example in the Leslie population model of
Section 2.4, the birth and death rates may be time dependent. Similarly,
the "output" matrix of the Leontief model in Section 2.5 is often time
dependent.

Consider, then

hRF B = k3, @

nxn
- E 3 -
where Ak’ Bk ¢ and f, is given.
The method presented here is a slight extension of that employed by

Luenberger [51], [52] for "causal" systems.

Assume that rank(Ak) = r is constant. (This is a discrete Type I

assumption.) Then multiplication by an invertible Pk’ (performing
elementary row operations) gives
T Sk By
X + = (2)
0 —k+1 D h
ﬂ(
where rank(Tk) T Tk (= man. Now (2) may be rewritten as
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T C
e B 6
D1 - L

There are four possibilities.

T
Case I. [Dk ] is invertible in which case we have what Luenberger calls a

k+1:
regular problem. In this case X1 is determined by X £k and £k+l as
1 -1
=% B | M “
Skl T L : A e
k+1 —k+1 k+1
T
Case II. Rank D is constant and greater than r. In this case (3) is
k+1I-

viewed as (1) and a new (2) is computed with a T, of rank greater than r.

k

1

Case III. Rank [

k
D :] is not constant and we have a discrete Type II
k+

problem.
T

Case IV. Rank D = Rank(T, ) for all k.
I+ k

To discuss Case IV we need a variant of (2). Since rank(T,) = r, there

k+1 0 0 0 k

amounts to doing elementary column

k
nxn Tk zk 0 rXn
exists invertible P EC such that Pk+1 = where £, € ¢

and Zk is invertible. Of course,

operations and I

P

" could be taken as the identity which we shall for

simplicity.

Let x = kak and BN [ ] where 2z € ¢*. Then (2) becomes

%ﬁ Ap

I O0}f| = L z g
Zerr | |k M f] 2| _ | B ) %)
Sl Ne Fedl¥%e By

Now consider Cases I - IV. The only way Case IV could occur would be if

R, = 0. Suppose that R = 0, so that (4) is

-
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et Ml e (%)

NkEk = hk . (6)

If Nk = 0, then (5) provides the solution with w, arbitrary. If Nk is one

to one, then 2y N; Ek if (6) is consistent and (5) becomes an algebraic

equation for W which may or may not be consistent depending on Mk and Ek‘

Suppose then Nk is not one to one. Then the only way a repetition of (3)

can fail to increase the rank eventually is if Nk+1Mk = 0 and

Nk+£Lk+R—1 = Lk+1Mk =0 for k > 0, & > 2. For this very special case
there are a large number of possibilities. Their enumeration is probably
not particularly helpful, and problems of this type are probably best

handled on an individual basis.
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7 Computation

The preceding chapters have provided a variety of explicit formula for
solving a variety of singular systems. While these results are quite useful
in describing solutions and their behavior, they are not necessarily the
quickest or most economical way to compute the solutions. As to be expected,
however, - they do suggest a way to compute the solutions.

In [16] we proposed a '"deflation" algorithm for computing AP using unitary
operations as well as several other methods if A is "well-conditioned."
Wilkinson in [66] also proposes a deflation method quite similar to ours but
using similarity transformations. A somewhat related approach is used in a
proof in [24].

It is obvious that to just compute a quantity like A_lg, or Afg'one need

+

not first compute A—'l or A'. Similarily, in [66], Wilkinson observes that,

in fact, one may apply his deflation method directly to Aé + Bx = f and

obtain the solution without having to compute [(AA + B)_lA]D first.
This chapter will be concerned with solving
Ax + Bx = £, A,B € ¢V, (1)

In order to motivate this algorithm, let us first recall how (1) is

solved in Chapter 3. If AA + B is invertible, then (1) is equivalent to

Oh+ B) T4k + GA 4+ B) TBx = A+ B) O£ 2)

Let T be invertible so that T(XA + B)ylA.'I‘_1 = [S 3], where C is invertible

and N is an upper-triangular nilpotent matrix. Since (AA + B)—lB =
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I - 2(AA+ B)-lA, (2) is equivalent to

R DA I-x¢ 0 e
(Tx) + (Ix) ="T(3A +B) £+

0 N 0 I-AN
Now the systeﬁ (3) decouples into two systems. The first is a conventional
nonsingular system and the second system is Né.+ (I - \N)z = g which we
know from Theorem 3.2.3 to have a unique solution in terms of the
derivatives of g.

But the reduction of (1) to (3) can also be viewed as a change of

variables y = Tx, and a left multiplication by P = T(MA + B)_l to change

i

(1) into (here Q = T )

PAQy + PBQy = Pf (4)

where PAQ = {g g], PBQ = [%_SC I-gﬁ]' Thus the reduction to (3) can be
thought of as being accomplished by elementary row and column operations
performed simultaneously on A,B and f.

We shall show how Wilkinson arranged these operations into a reasonably
efficient algorithm for solving (1). We shall concern ourself only with the
case where the matrices involved are reasonably well conditioned and the
rank, when needed, can be numerically determined. This is frequently the
case in practice.

We shall also assume that XA + B 4dis invertible for some A. This is not
necessary to start the algorithm. However, if XA + B is singular, the
algorithm will eventually indicate that fact and not provide a complete
solution.

If A is invertible, then é + A-lB§ = A_¥£ and (1) can be solved by

classical means. So assume that A is singular. Then there is a sequence of
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elementary row operations given by a matrix P so that PA = [}(3)]’ where E 1is

of full row rank. let PB = l:g] Since [)‘g-*F] is invertible for some A, G

must be of full row rank. Thus there are elementary column operations Q so

B B
that g Q = [ol Bi], where B3 is invertible and rank(Ba) = rank(G). Let
i ,

I:g]Q - Bl 02]. Then (4) becomes

A Allx B. B |[x 3

e | e (5)
4 0 B
G | 3JUX2 5]

1
But 33 is invertille. Hence %, = B3 J:9) and

. -1- =1
Ay Baly By T ARe TRy DRy gy (6)
Now there are three possibilities. If Al is invertible, then (6) is solved
classically. If A = 0, then B, is invertible and (6) gives X 1f Ay #0

and Al is singular, then we repeat the process again on (6) to get a new
system in the form of (5). Since the order of the system decreases at each
iteration, the process terminates in a finite amount of time.

It goes without saying that in solving (5) for X,, one would not compute
]33-l but rather solve 8352 =8 by elementary row operations.

These same ideas can be applied to compute many of the other quantities

in this book.

For example, if one just wanted to compute AD, then again take

o g L € ¢“F wh £ full PoAp T - oL
12 = ol E C where E is o u row rank. Then lAPl =lo o |’
El 5 err. If El = 0 or is invertible we stop. If not, we repeat the

process on E Continuing in this way we eventually either get

1
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11 ALk
| 2 0 0 4,4 S AL p Ay 8
Pl P_AP s P = 5 =
k il k 0 N
A e
0 Gy TR
k8 =
LA e ;
where All is invertible or just E ..Ak—l,k . In the second case
D O L0
A" = 0. In the first case, k additional similarities are performed to
annihilate A 1< i< k+l. In each case the similarity is the obvious

1i’

one of using elementary column operations and the invertible All' For

-1
Dess S8y bl
example, if P =} 0 2= e
Ty S e O
0 A13 i g Al,k+1
1k ot 5 -1
P Pk PlAPl . Pk P = 0 A23 & 2 A2,k+l (8)
2 . A 0

Depending on exactly what one wants to compute there is another way to
proceed from (7) which, while mathematically equivalent to proceeding as in

(8), is worth noting. Let X be the solution of

A X - XN = -C. 9)

If X is r x s, then (9) is a linear system in rs variables. Since All is
invertible and N is nilpotent, (9) has a unique solution. This system is
well discussed in the literature. Let X = [Xl’ e ’Xk]' Then from (7) we

have (9) is
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A X = A

1151 = A
i S Lo b 10}
A o WK - X, A = A

T3 1724 2734 142

One may solve the first equation in (10) for Xl’ the second for Xz, and so
on.

Suppose now that the solution X of (9) has been computed. Then

D S s |
A, B ; T X\[4; 0T -¥ 5 Ay BT P ALK 1
0 N LI o 1, T | I o L o FURNE ) [ 0

D
All g A11 : 3 R, . It is the use of (9) to compute X which
0 N 0 N 0 0

makes the deflation algorithm of [66] superior to the othef proposed

deflation algorithms.
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8 Higher order systems

1. BACKGROUND AND PROBLEMS

Up to this point we have been concerned entirely with first order systems:
- What of higher order systems? Do the ideas presented, so far, work for

systems of the form
ax™ ey +a ™Dy 4 e axP e e axm = 20 (1)

where Ai e ™2 0of course (1) may be written as a first order system by

the standard trick of setting g 3‘1), Yo 7 EKZ)""’Xm—l = gKm_l), so
that (1) becomes
T e Rt ) i ] i il e =N X 0
i =1 =% o
FLEI y 0 GESIECIE S S () y 0
. . al v = -y
3 T 3 Y . -1 . e .
o A B i ) oty R =
or
Aé + Bz = g. (3)

The system (2) is a singular system if and only if Am is singular.
(1Y has been considered by several authors. For example, Duffin [23],
[24], Gohberg [29], and Langenhop [35], [47].
In principal, everything one would need to know about (1) can be found
out from (2). However, it would be interesting to have an expression for

the solutions of (1), or a description of their behavior, directly in terms

of the A..
1

159



This chapter will present some of the background material on (1) and
discuss Qhat type of additional work is, in our opinion, needed. Let
= m
O e T (4)
5 m 2
i=0

Consistent with [28] we call (1) regular if (4) is invertible for some A.

Proposition 8.1.1 Solutions to (1) are uniquely determined by consistent

initial conditions if and only if (1) is regular. If f is sufficiently
differentiable, and (1) is regular, then (1) is consistent for some initial

walues g§§\,.‘.q§m_l)(Q\.

Proof It is possible to prove Proposition 1 directly from (1). However,

the proof in [35] is probably quicker. Note that

[ o o S DR 17+ PR B G
0 0 I+ =+ =+ +0 E0% i DR
M+B=| ; OREER g SCRE R R
0 ey = R : : :
AQ) 1L ) 7o eC () E O e E Gy > oy AT IJ
T -

m e

where Ci(A) = Z AjAJ—l. Then det(M + B) = det A(A). Thus (1) is regular
3=1

if and only if (2) is regular and Proposition 1 follows from Theorem 3.1.3

applied to (2). D

Now there are methods for solving (1) if (1) is regular. In [35] a
method is given which con;ists of first finding the Ai for which A(Ai) is
singular and then generating a '"complete set of singular sequences.'" While
of mathematical interest, we find that approach not completely satisfactory

on two counts.
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First, if one had a particular (1) that one actually wanted to solve,
the amount of work involved in this process is probably both more time
consuming, and more numerically sensitive, than to just apply Wilkinson's
algorithm of Chapter 7 directly to the system (2).

Secondly, this approach does not provide for closed form solutions for
(1) directly in terms of the A;. For the first order system Aﬁ + Bx = 0,
we feel that there is something more satisfying about characterizing the

~

space of initial conditions as R(ADA), A= (A + B)"lA, as opposed to the

1 LinTT LAY found Tn 1671 which 18 aqmivaiene

iterated set mapping B_IAB_ «+-AB~
to the singular sequence of [35]. (Here B-1 means inverse image and not
that B is invertible). |

The development in [29] is similar to that of [35]. Although [29]
develops an elaborate theory for matrix polynomials and contributes to our
understanding of them, it also has the two shortcomings addressed above.
Perhaps the approach of [29] is the best possible, for the case m > 1 we
have been unable to do better. However, we believe the problem is worth
further investigation.

We shall conclude this section by presenting a couple of specific

problems we would like to see solved.

Consider (1), (4) with m = 2;
AX + Bk + Cx=£, A() =2A%A+ B +C (5)

Equation (5) could naturally arise, for example, in considering electrical

circuits. Let y = i so that (5) is

=
>
FS
(9]
o
|
|+

£ ; . (6)
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Suppose that C were invertible. Then (6) would be

o
(5]
o
>

I e
=
o

| ™
o
th

+ = ) (7)
y 0

|
=
o
I e
o
=

X

YD
I Q] in terms of X and Y.

Problem Find a formula for [

The solution of this Problem would be of some interest as a contribution
to the theory of generalized inverses. However, its real importance lies
in providing solutions and information about (5). From the theory
developed in Chapter 3, it is clear that the Problem is equivalent to
solving (5) in terms of A,B,C and f.

The assumption that C is invertible is actually not restrictive. For

let X be such that A(A) is invertible. Let x = ex?g. Then (5) becomes

AZ + (23 + B)z + Az = ¢ bf, (8)

and (8) is in the form (5) but with C invertible.

The Problem is also closely related to certain riccati equations. Since
the Drazin inverse is well behaved with respect to similarity it is natural
to try and make [§ g] simpler by a similarity. The Drazin inverses of

upper and lower triangular matrices are known [16].

0

Suppose one considered an invertible matrix [g f] and asked when is
i ~1
[E ] [X Y} [E F] either upper or lower block triangular with the

G O A 0) G O
same size blocks. It is easy to verify that if Y # 0, this happens if and

only if EX + F - EYF-IE = 0. Letting K = F_lE, we get

KX+ I-KYK=0 / 9)
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which is a standard riccati equation. It is easy to check that the other

: Q. E ST E O : oy
choices of [F G} : [0 G] % [F G] all lead to equations similar to (9).

Thus a complete solution of the Problem will tell when certain riccati
equations have invertible solutions.

In some applications, such as electrical circuits, some, or all, of
A,B{C often have a special form such as symmetric or positive semi-definite.
It seems reasonable that in some of these special cases, the probiem might
be more easily resolved.

Finally, note that the two special cases C = 0, or B = 0 are easily
solved. If C = 0, then Ag ik Bé = f is first order in é, It may be solved
for é_using Theorem 3.1.3 and then antidifferentiating to give x. If
B = 0, we have Ag +Cxom £ This equafion is easily solved using Laplace
transforms. One just takes 32 = X in the Laurent expansion of XA + C

given by Theorem 4.2.1.

2. SECOND ORDER SYSTEMS

The ideas of this section extend easily to higher than second order systems

but for notational convenience, we shall limit our discussion to studying

Az + Bz + Cz = £, A,B€E V", )y

In [35], some results of Duffin [23] are extended to cover (1) when A,B,C
are all real symmetric positive definite matrices. In this section we shall
show how the approach of Luenberger described in Section 4.5 can be

slightly modified to solve (l) under a wide variety of conditionms.

A 0
Let E,F be invertible matrices so that EAF = - Q] with Al invertible.

Let w = F_lz = [i] . Then (1) becomes
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>
[
[e?
o
[ e
@
A
|
()

+ S ER = ; (2)
0 0 B3 B4 y C3 C4 y g
Differentiating the second line of (2) gives
F e E X i & X (e x £
1 she G S e S e e 2l 3)
133 B, vy ¢y C, ¥y 0 0 y 8

Now if B, is invertible, (3) is a nonsingular system and a solution X,y
exists for any x(0), y(0), i(O), i(O). Taking such a solution of (3),
substituting it into (2), and using (3) we see that x,y is a solution of (2)

if and only if
Byx(0) + B,y(0) + C,x(0) + C,y(0) = g(0) (4)

Let us call (1) nonsingularizable if there exists E,F so that in (2), B4

is invertible. Recall that an EP matrix [16] is one such that AAJr = ATA.

All normal matrices are EP.

Proposition 8.2.1 Both of the following imply that (1) is nonsingular-

izable:
(i) A is EP and B is positive definite.
(ii) A is EP, B is positive semi-definite, and XA + B is invertible for
some A.
In both these cases, the set of consistent initial conditions is character-

ized by
+ 4 : + t
(I - A'A)Bz(0) + (I - A A)Cz(0) = (I - A A)f(0). (5)

Proof Clearly the sufficiency of (ii) implies the sufficiency of (i).

x A 0
* *
Suppose then (ii) holds. Take E = U, F = U where UAU = [01 Q]_ and
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Al is invertible. (The existence of such a U is equivalent to A being EP.)

=)

Suppose that B4 were singular. Let u be such that B4g_= QENTE BZE =

o

*
then (A + B)U u = 0 for all A which is a contradiction. Hence Bzg_#

Let v = aBzE, Then

v B B

|<

s *B *B B 5 * %
=¢euB, BiBu + 2eu B2 Bg&-
u B B

But: for e < 0, |e| small, this expression is negative which contradicts the
positive semi-definiteness of B. Hence 34 is nonsingular. The character-

; 4 %t %
ization (5) now follows from the fact that (UAU ) = UA U . []

Proposition 1 is nice because it is reasonably easy to verify (i) or
(ii). However, there are many other ways to arrive at (2). If EAF provides

the singular value decomposition of A, we get the following.

Proposition 8.2.2 If rank ((I - ATA)B(I - AfA)) =n - rank(A), then (1)

is nonsingularizable and the set of consistent initial conditions is again

characterized by (5).

If A has index one, it is easy to get a variation of Proposition 2 with
rank ([B;A]) = n-rank(A) and [I;A]Bz(0) + [1;A]Cz(0) = [T;A]£(0). We
leave the details to the reader.

Note also that nonsingularizable is not only a stronger property théﬁ

regularity but is even stronger than assuming that XA + B is invertible for

some A.

Proposition 8.2.3 If the system (2) is nonsingularizable and is written

as a first order system in the form (1.6) and this system is denoted by

Ax + Bx = h, then Ind(A) = Ind((WA + B) “4) = 1.
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Proof 1If (2) is nonsingularizable, we have

- 3
B1 B2 A1 0
A B3 B4 0 0 5 11 0
I 0 0 0 A21 0
LO i 0 0
_b C 0 61
1 2
C 0 0 B 0
AN Ry
0 0 =T 0 (0= ST

Note that A11 is invertible. Hence M + B is invertible for some ). But

then

o)

(A +Bp) Ay, 0
e

>\A21(AA11 + Bll) 0

A= OA+ B)_lA = which has index one. []

Proposition 3 is essentially the same as Proposition 3.6.2 except we have

chosen a different method of proof.
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