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Abstract

It is shown that it is possible to greatly improve the per-
formance of the predictive control strategy proposed by
Jankowski and Van Brussel [9] by using preliminary lin-
ear feedback. This is illustrated using the example of a
flexible-joint robot path following problem.

1. Introduction

A predictive control strategy for the prescribed path fol-
lowing control of flexible joint-robots has recently been pro-
posed by Jankowski and Van Brussel [9]. Their method
uses efficient numerical techniques for integrating higher in-
dex differential algebraic equations (DAE’s) for construct-
ing the control. In [5], we presented an analysis of this
control strategy and showed that by a simple extension of
this strategy (in particular by adding a preliminary feed-
back) it can be applied to a much broader class of problems.
In this paper, we show that it was a coincidence that the
Jankowski and Van Brussel strategy worked on the partic-
ular flexible-joint robot considered in [9] and explain their
observation that their controller becomes unstable for small
sampling periods. We then show that by adding a prelim-
inary feedback, their control strategy works for any (suffi-
ciently small) sampling period and has better performance.

In Section 2, we present the path following problem and
the predictive control strategy proposed by Jankowski and
Van Brussel. In Section 3, we review the analysis of this
strategy, introduced in [5, 6], which shows how preliminary
feedback may be needed in certain circumstances. Finally,
we give a comparative study of the performance of the con-
troller without and with preliminary feedback for different
sampling periods, using the example of a flexible-joint robot
introduced in [9].
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2. Predictive Control of Jankowski and Van
Brussel

The solution to tracking problems can be found in non-
linear control theory as exact input-output linearization
[8]. Using this method, as long as the original system is
minimum-phase, it is possible to construct a stabilizing
controller which achieves asymptotic tracking for any suffi-
ciently differentiable reference trajectory. The main draw-
back with this approach is its computational complexity.
Even for small nonlinear systems, the symbolic computa-
tion required for exact input-output linearization can be
prohibitive. In order to overcome this difficulty Jankowski
and Van Brussel [9] have proposed a new design methodol-
ogy, closely related to predictive control or receding horizon
control. As in all these strategies their approach is in part
open-loop and in part closed-loop. They measure the state,
compute an open-loop control which is applied on a short
time period, and start over. To compute the open-loop con-
trol they “minimize” in some sense the tracking error using
numerical integration schemes for higher index DAE mod-
els [2]. As with many other predictive controller approaches
another advantage is that it is easy to incorporate changing
constraints. In our case, one merely adds to, or alters, the
equations being fed to the DAE integrator Nonpredictive
approaches typically require a complete recomputation of
the nonlinear control law.

The path following control problem considered hre is the
following. Given a system of differential equations

ẋ = f(x) +
m∑
i=1

gi(x)ui = f(x) + G(x)u (2.1a)

and the output vector function

y = h(x) (2.1b)

the objective is to find a stabilizing feedback control u(t, x),
such that the output y follows a given function of time ξ(t).
That is,

e(t) = y(t)− ξ(t) (2.2)

converges to zero as t goes to infinity. The index of the
DAE (2.1) as a system in (x, u) is one more than the relative



degree of (2.1). If there were additional material constraints
acting directly on x in (2.1a), then the index could be more
than one higher than the relative degree.

Jankowski and van Brussel propose to solve this problem
as follows:

• Application of a number of steps of the stabilized struc-
ture algorithm to the DAE (2.1) in (x, u). (That is, the
path constraint (2.2) is multiplied by a stable polyno-
mial p(s) in the differentiation operator s = d

dt . See
[8] for a detailed analysis of this method.) The new
system

ẋ = f(x) + G(x)u

y = ĥ(x) + Ĵ(x)u

has low index (less than or equal 3). Reducing the
index to no more than 3 is necessary because the type
of numerical integration schemes being used here to
solve the DAE, namely BDF methods, need the index
to be three or less to be reliable.

• Discretization of the DAE in (X,U).

Ẋ = f(X) + G(X)U (2.3a)

ξ̂(t) = ĥ(X) + Ĵ(X)U (2.3b)
X(tρ) = x(tρ) (2.3c)

using an implicit discretization scheme. Implicit meth-
ods must be used because a DAE is being integrated.
The need for fast integration leads to the choice of a
first order BDF method (backward Euler),

Ẋ(t + ε) =
X(t + ε)−X(t)

ε
,

where ε is the discretization time interval. We let Xρ
0 =

x(tρ) denote the sampled state vector x at times t = tρ,
ρ = 1, 2, · · ·, where tρ+1 = tρ + δ and δ > 0 is the
sampling interval. Let {Xρ

j , U
ρ
j } denote the computed

estimates for {x(tρ+εj), u(tρ+εj)} starting with Xρ
0 =

x(tρ). The resulting discrete approximation of (2.3) is

Xρ
j+1 −Xρ

j = ε{f(Xρ
j+1 + G(Xρ

j+1)U
ρ
j+1}

ξ̂(tρ + jε)− ĥ(Xρ
j+1)− Ĵ(Xρ

j+1)U
ρ
j+1 = 0

Xρ
0 = x(tρ) .

(2.4)

We use uppercase letters for the numerically integrated
DAE (2.3) as opposed to the original system (2.1).

• Computation of the numerical solution of (2.4) over
the time interval [tρ, tρ + τ ], where τ = kε. That is we
solve (2.4) from j = 0 to j = k, where k is an integer
to be chosen larger than the number of left out steps in
the structure algorithm. Equivalently, k is larger than
the index of the stabilized DAE.

• Application of a piecewise constant control u(t) to (2.1)

u(t) =



...
Uρ
k for tρ ≤ t < tρ + δ

computed with initial value Xρ−1
0 = x(tρ−1)

Uρ+1
k for tρ+1 ≤ t < tρ+1 + δ
computed with initial value Xρ

0 = x(tρ)
...

Here δ ≥ ε and ε is chosen such that 2δ ≥ kε ≥ δ.

This procedure is illustrated in Figure 2.1.

Figure 2.1 Representation of the predictive control
strategy proposed in [9]. x(t) represents the state evo-
lution of the controlled plant over time t. At each time tρ,
the plant is sampled and the vector x(tρ) is used as the ini-
tial value Xρ

0 for system (2.3). The plot Xρ
j , Uρ

j represents
the result of the numerical integration of system (2.3) for
j = 0 to j = k. The control value of u over the interval tρ+1

to tρ+2 is chosen to be Uρ
k . Clearly, to be implementable,

the numerical integration of the DAE has to be faster than
real-time.

3. Stability analysis

In [5] we presented a detailed analysis of the predictive
control strategy of [9] in the linear case. We considered the
linear system

ẋ = Ax + Bu (3.1a)
y = Cx + Du . (3.1b)

To analyze the properties of the predictive control applied
to system (3.1), we made a few simplifying assumptions.
The first assumption was that the solution of the DAE (2.3)
is constructed without any error, the second assumption



was that the time δ between two measurements of the state
is very small so that the limiting behavior as δ go to zero is
only considered. For the sake of simplicity we assumed that
(3.1) represents the partially stabilized system. Without
any loss of generality we suppose that (3.1) is in the form

[
ẋ1

ẋ2

]
=

[
A1 A2

A3 A4

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[

C1 C2

] [
x1

x2

]
+ Du . (3.2)

where the subspace of x1 is the largest output nulling (A,B)
invariant subspace of (3.1). In [5] we showed that the feed-
back K obtained from the predictive control strategy of [9],
yields the following closed loop dynamics.

[
A1 A2

A3 A4

]
+

[
B1

B2

] [
K1 0

]
=

[
A1 A2

0 A4

]
[

C1 C2

]
+ DK1 =

[
0 C2

]
.

Clearly, the success of this control strategy depends on the
stability of A1 and A4. It is well known that the eigenval-
ues of A1 are the zero dynamics of the original system so
that A1 is a stable matrix provided the original system is
minimum phase. Eigenvalues of A4 on the other hand are
not known a priori and can be stable on not. It is exactly
these eigenvalues that are “stabilized” by the preliminary
feedback introduced in [5].

To be more specific, before the computation of the predic-
tive control, a feedback of the type u = K2x2+v = Kprx+v
is applied to the system to place the eigenvalues of A4.
Since the feedback obtained by the predictive controller
of [9] does not act on A4, the controlled system is nec-
essarily stable (provided the system is minimum phase).

Figure 3.1 Representation of the predictive control
strategy with preliminary feedback

Of course this analysis is only valid for linear systems, and
special care must be taken for its application to nonlinear
systems. In particular, the computation of the linear pre-
liminary feedback should be done based on the linearization
of the system around a reasonable operating point which is
to be updated if necessary (gain scheduling).

4. Example: flexible-joint robot introduced in [1]

To illustrate the importance of the preliminary feedback
discussed here we shall examine the flexible-joint robot in-
troduced in [1]. Since we did not have access to the robot
the evaluation was performed with computer simulations.
As is typical with the path control of flexible joint robots
the index of the original DAE in (x, u) is five. If actua-
tor dynamics were included the index would be six [3, 10].
Two stabilized differentiations will be done to make the
DAE index three. A couple of other modifications of the
basic procedure will be pointed out.

Figure 4.1 Schematic view of the experimental two-link
robot with one flexible joint used in [9].

Model Parameters
Parameter Value

A1 4.984 kg m2

A2 0.247 kg m2

A3 0.328 kg m2

Ir1 1.939 kg m2

Bv1 1.40 N m s/rad
Bv2 0.20 N m s/rad
Fc1 4.82 N m
Fc2 1.15 N m
ε1 10−4 rad
ε2 10−4 rad
K1 1152.6 N m/rad



The dynamic model of the system is A1 + 2A3 cos q2 A2 + 2A3 cos q2 0
A2 + 2A3 cos q2 A2 0

0 0 Ir1

 q̈1
q̈2
θ̈

 =

 A3q̇2(2q̇1 + q̇2) sin q2
−Bv2 q̇2 − xf2 −A3q

2
1 sin q2 + T2

−Bv1 θ̇ − xf1 + T1

 + K1

 θ − q1
0

q1 − θ


ε2ẋf2 = −|q̇2|xf2 + Fc2 q̇2

ε1ẋf1 = −|θ̇|xf1 + Fc1 θ̇
(4.1)

where the last two equations model dynamic friction. Con-
trol variables are the torques {T1, T2}. State variables are
{q1, q2, θ, xf1 , xf2}. Following [9], for the predictive con-
trol design the output tracking errors e1 = (q1 − qd1)
and e2 = (q2 − qd2) are premultiplied by the polynomial
p∗(s) = p(s)/s, where p(s) = s3 + 3αs2 + 3α2s + α3. The
integrator is added to avoid the reconstruction of the fourth
derivative of q1. Due to the factor 1/s in p∗(s) we have to
add the following integrator equations,[

ẇ1

ẇ2

]
=

[
α3

1(q1 − qd1)
α3

2(q2 − qd2)

]
(4.2)

so that the stabilized error equations become

0 =
[

(q̈1 − q̈d1) + 3α1(q̇1 − q̇d1) + 3α2
1(q1 − qd1) + w1

(q̈2 − q̈d2) + 3α2(q̇2 − q̇d2) + 3α2
2(q2 − qd2) + w2

]
(4.3)

As long as (4.1),(4.2),(4.3) contain dry friction terms a
linear analysis of the DAE is impossible. As proposed in
[1], to eliminate the dry friction torques xfi we add the
nonlinear observer

εi ˙̂xfi = −|v̇i|x̂fi + Fci v̇i , i = 1, 2, (4.4)

where v1 = qθ and v2 = q2. Using the observed dry friction
torque x̂fi we can pre-compensate the effect of dry friction
by ui = vi + xfi .

Numerical evaluation of the eigenvalues of A4 for lin-
earizations around different nominal points shows that the
eigenvalues stay close to 2.63±j29.58. As a consequence the
predictive control strategy of [9] cannot work based on our
linear analysis as given in [4, 5]. This is consistent with the
observations in [9], that their control fails for small δ since
our analysis was based on the limiting control as δ → 0+.
By applying the preliminary linear feedback

Kpr =[
102.3 −0.07 −103.0 15.97 −0.10 −17 0 0
16.17 −0.01 −16.3 2.55 −0.02 −2.71 0 0

]
obtained by standard LQ techniques [5], the eigenvalues of
A4 are moved to −2.61 ± j29.58. Applying the predictive
control to this new system then yields a stable control for
all δ < δmax.

The necessity of using preliminary feedback is now clear.
Even for this example, where by chance, predictive control
of [9] works for large δ, the use of preliminary feedback al-
lows us to consider δ as a full design parameter. This is
useful because small δ yields small tracking error so that
the size of δ should only be lower bounded by limitations
of the processor or state estimator. Exactly why the sys-
tem was stable for large, but not too large, δ is not clear.
It might be due to the delay introduced by large δ. How-
ever, as noted in [4] and illustrated their with numerical
tests, there is a subtle interplay between the control pa-
rameters k,m, δ, ε, αi that can lead to stability or instabil-
ity for systems which are not strongly stable or unstable.
Since the normalized eigevalues of A4 in this example are
0.0886± j0.9961 relatively small changes can alter the sta-
bility.

5. Comparative study of the controller with and
without preliminary feedback

For comparison purposes we take the same reference tra-
jectory as in [9]. The reference trajectories for both links
are

qd(t) = qd0 + (qdf − qd0)×(
70
t9f

t9 − 315
t8f

t8 +
540
t7f

t7 − 420
t6f

t6 − 126
t5f

t5

)

Here qd0 is the initial position, qdf is the final position, and
tf is the time required for the slew. For large sampling
periods δ >> 0.01 the predictive controller works and pre-
liminary feedback yields no tremendous performance im-
provement. For smaller δ, without preliminary feedback,
the predictive controller destabilizes the controlled system
and the use of preliminary feedback is necessary.

Parameters for Reference Function
Parameter Value

qd10 0 rad
qd1f

π
2 rad

tf1 1 s
qd20

3π
2 rad

qd2f 0 rad
tf2 1 s



Controller Parameters
Parameter Value

α1 2
α2 2
k 12
ε δ

8

Figure 5.1

Predictive
Control as proposed in [1] with preliminary feed-
back: Tracking error for the first and the second link for
a sampling time δ = 0.04 s. Satisfactory errors can be
achieved for large δ as long as δ < 0.1 s. The errors are
comparable with those obtained in [9].

Figure 5.2

Predictive
Control as proposed in [1] with preliminary feed-
back: Tracking error for the first and the second link for a
sampling time δ = 0.01 s. The error decreases gradually as
δ becomes small.

Figure 5.3

Predictive
Control as proposed in [1]: Tracking error for the first
and the second link for a sampling time δ = 0.01 s. Without
Preliminary feedback the system becomes unstable for small
sampling periods. A change of the control parameters αi to
smaller values does help.

6. Conclusion

We have shown that the predictive control strategy pro-
posed in [9] can result in unstable systems. We have given
an extension of the proposed control strategy and have
shown its application to the flexible-joint robot example
used in [9]. The extension maintains all of the potential ad-
vantages of the proposed approach but results in enhanced
performance. While the preliminary feedback is linear, the
final predictive control law is nonlinear and as shown here
can be effective on nonlinear systems.
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