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Abstract

Observers are usually formulated as explicit systems
of di�erential equations and implemented using stan-
dard ODE solvers. In this paper, we show that there
can be advantages in formulating the observer as a
DAE (Di�erential-Algebraic Equation). We review

the general idea of DAE observer design of [10]. We
give two special normal forms for which DAE observer
design yields an observer with linear error dynamics.
The idea to use DAE observer normal forms is intro-
duced on index one DAE observers and then extended
to index two Hessenberg DAEs. This allows us to en-

large the class of nonlinear systems for which linear
observer error dynamics can be achieved.

1. Introduction

Consider the nonlinear systems

_x = f(x; u) (1)

y = h(x): (2)

where f and h are smooth vector �elds on IR
n and

IR
p, and the pmeasurements y in (2) are independent.

The problem of observer design consist in �nding a
nonlinear system

0 = bf( _!; !; u; y)bx = bg(!; u; y) (3)

that generates an estimate bx(t) of the true value x(t).
De�nition 1 System (3) is an observer for System
(1), if bx(0) = x(0) implies bx(t) = x(t) for all t > 0
and, for bx(0) 6= x(0) we have that bx(t) ! x(t) as t
goes to in�nity.

The problem of how to design system (3) to be an ob-
server for (1) has been extensively studied in the past.
There are essentially two approaches. The �rst ap-
proach is a natural extension of linear observers and
is very commonly adopted (for example see the tech-
niques presented in the comparative study of [13]).
The other approach to observer design is to work di-
rectly with system equations (1)-(2), either formulat-
ing the estimation problem as a nonlinear algebraic

system of equations which must be solved periodically
using for example Newton's method (see for example
[9]), or formulating it as an optimization problem over
some sliding �nite horizon which is again solved pe-
riodically [8].

In this paper, we present an alternative to these
two approaches. We show that there can be ad-

vantages in formulating the observer as an implicit
(descriptor) system which can then be solved using
a DAE (Di�erential-Algebraic Equation) solver. For
index one DAEs this can for example be done by the
Di�erential-Algebraic-System-Solver (DASSL)[3, 11].
More importantly, if (1)-(2) has a special form and
veri�es some algebraic conditions we can easily con-
struct an DAE index one observer that has linear time
invariant observer error dynamics.

The class of nonlinear systems is even larger if we
allow (3) to be an index two Hessenberg DAE [3].
Index two Hessenberg DAEs are of particular interest
since this type of DAEs can also be safely solved by
di�erential algebraic system solver (for instance with
DASSL with �xed stepsize [3]).

The usefulness of this approach will be shown on a
simple example. For a more detailed analysis of DAE
index two design and its application to mechanical
type problems see [12].

2. Index one DAE observer

System (1)-(2) is a DAE in x (u and y are supposed to
be known). This over-determined (n unknowns, n+p

equations) DAE describes all the constraints (infor-
mation) that we have for constructing x̂. To make
this DAE integrable, we can do relaxation by intro-
ducing a p-dimensional vector �(t) into this DAE.
One way to introduce � in the algebraic part (the
observation ) (2)

_̂x = f(x̂; u) + g(�) (4)

0 = y � h(x̂) + � (5)

which means that we relax the entire estimate bx. It
easy to see that introducing � as in (4)-(5) leads to
the usual explicit formulation of the observer.



The other way is to introduce � in the di�erential
part (1). In this case we constrain partially the esti-
mate bx through h(bx) by the observation y and relax
only the remaining part. This is the way index one
DAE observer design is introduced in [10]. Through-
out the remainder of this paper we use the following
de�nition.

De�nition 2 The DAE of the form
_bx+ �(bx) _� = f(bx; u) + �(bx; u)� (6)

0 = y � h(bx) (7)

is called canonical observer DAE for System (1)-(2).

For � = �hx(x) = �@h(x)=@x ( � is any matrix
of appropriate dimensions depending on bx and u) we
recover the canonical index one DAE observer form
of [10].

Note that we obtain the original system equations
(1)-(2) for � = 0. Under appropriate observability
conditions, �(t) ! 0 implies that bx(t) ! x(t) forbx(0) 6= x(0). � has to be chosen such that �(t) !
0. To this end we observe that for su�ciently small
observation error ex = bx� x we have�
I��(bx)
0 0

� �
_ex
_�

�
=

�
fx(bx) �(bx; u)
hx(bx) 0

� �ex
�

�
+O(kexk2) (8)

(where fx = @f=@x). System (8) has an equilibrium
point at (ex; �) = (0; 0). For �xed (bx; u) we may chose
� such that this equilibriumpoint is stable for all �xed
(bx; u). If (bx; u) varies slowly against (�; ex) stability of
(8) for �xed (bx; u) implies stability for varying (bx; u)
(see extended linearization [1]). In this case we may
use Ackermann's formula (see for example [5]) to com-
pute a �(bx; u).
2.1. Exact linearization of the error equation

If System (1)-(2) is in the special form

_x1 = f1(x1; u) + F1(x1; u)x2
_x2 = f2(x1; u) + F2(x1; u)x2
y = x1

(9)

(we will refer to as index one DAE observer normal

form) and we chose

� =

�

�1
1 (y)


�1
1 (y)
2(y)

�
; � =

�
�1(y)
�2(y)

�

(6)-(7) is an index one DAE (which will be referred to
as index one canonical DAE observer form) and (8)
becomes the linear time varying system�

_�
_ex2

�
=

�

1�1 
1F1

�2 � 
2�1 F2 � 
2F1

� �
�ex2

�
(10)

There exist a number of methodologies to stabilize
(10) by use of 
 and � (extended linearization, Lya-
punov design, etc.). Here we consider the case where
(10) can be made time invariant. For that we need
that the matrices F1 and F2 have a particular struc-
ture.

Theorem 1 Let F2(bx1; u) = F2+ eF2(bx1; u) where F2

is a constant matrix. Then, if

1. there exists an invertible matrix 
1 such that

1F1 is constant

2. F2 can be chosen such that the matrix pair
fF1; F2g is observable and there exists a matrix

F
�

2 such that eF2 = F
�

2F1

the error equation (10) can be made time invari-
ant and its modes can arbitrarily be placed by proper
choice of �1 and �2 for 
2 = F

�

2 .

Proof If (13) has Properties 1 and 2, the error
equation (19) is�

_�
_ex2

�
=

�

1�1 
1F1

�2 � F
�

2 �1 F 2

� �
�ex2

�
(11)

Since 
1F1 is constant and 
1 is invertible, (11) is
a linear time invariant system for �1 = 
�1

1 K1 and
�2 = K2 + F

�

2 �1, where K1 and K2 are constant
matrices. The modes of (11) can arbitrarily be set by
a proper choice of K1 and K2 if the matrix pair� �

I 0
�
;

�
0 
1F1

0 F 2

� �
is observable which is the case if the matrix pair
f
1F1; F2g is observable. 2

3. Index two DAE observer

The idea to use DAEs as observer for (1)-(2) can be
extended to the case where (6)-(7) is in Hessenberg
semi explicit index two form.

De�nition 3 A DAE is in Hessenberg semi explicit
index two1 form if it has the structure

_!1 = bf (t; !1; !2)
0 = bg(t; !1) (12)

where (@bg=@!1)(@ bf=@!2) is nonsingular.
We use the following result from [3], Theorem 3.2.2 :

Lemma 1 Suppose the nonlinear semi-explicit index
two system (12), is to be solved numerically be the
k-step BDF 2 method (k < 7) with �xed step size h,

the errors in the initial values are ke0k = O(hk), and
the errors in terminating the Newton iteration satisfy
O(hk+1). Then the k-step BDF method is convergent
and globally accurate to O(hk), after k + 1 steps.

The generalization of DAE index one observe design
is for example of interest in the case where (1)-(2) can
be put in the form

_x1 = x2

_x2 = f2(x1; x2; u) + F2(x1; u)x3
_x3 = f3(x1; x2; u) + F3(x1; u)x3
y = x1

(13)

1It can easily be veri�ed that two di�erentiations of the
algebraic equation 0 = bg(!1) su�ce to transform (12) into an
ODE.

2Backward Di�erential Formula, see for example [4].



This particular form is frequently encountered in me-
chanical type systems (
exible joint robots are for
example in this form [12]) and will be refered to as
index two DAE observer normal form.The observer is
the canonical observer DAE (6)-(7) with

� =

2
4 0


�1
1 (y)


�1
1 (y)
2(y)

3
5 ; � =

2
4 0

�1(y; bx2; u)
�2(y; bx2; u)

3
5

which we will refer to as index two canonical DAE
observer form. To insure integrability, we need to
show that the index two canonical DAE observer form
can be transformed into Hessenberg form.

Lemma 2 The change of coordinates

!1 = bx1
!2 = bx2
!3 = bx3 �
2(bx1)bx2
!4 = �+ 
1(bx1)bx2

(14)

transforms (13) into the Hessenberg semi explicit in-

dex two form

_!1 = !2

_!3 = bf2(!1; !2; !4; u) + bF2(!1; !2; u)!3
_!4 = bf3(!1; !2; !4; u) + bF3(!1; !2; u)!3
0 = y � !1

(15)

wherebf2 = f3 �
2f2 �
�
_
2 � F3
2 +
2F2
2

�
!2+

(�2 � 
2�1)�bf3 = 
1f2 + 
1

�
_
1 + F2
2

�
!2 +
1�1�bF2 = F3 � 
2F2;

bF3 = 
1F2

(16)
and � = !4 �
1!1.

Proof We have

_!3 = _bx3 � _
2bx2 �
2
_bx2 (17)

_!4 = _� + _
1bx2 +
1
_bx2 (18)

Elimination of 
2
_bx2 in (17) by use of (18) and the

left multiplication of (18) by 
�1
1 yields

_!3 +
2

�1
1 _!4=

n
_bx3 +
2


�1
1

_�
o
�
�
_
2�
2


�1
1

_
1

� bx2

�1
1 _!4=

n
_bx2 +
�1

1
_�
o
+ 
�1

1
_
1bx2

The sums in the curly brackets at the right hand side
are the left hand side of the of the third and second
block row of the index two DAE observer form. To-
gether with (14) and (15) we get

0 = bf2 + 
2

�1
1

bf3 + � bF2 +
2

�1
1

bF3

�
(bx3 � 
2bx2)�

f3 � F3bx3 � �2�+
�
_
2 �
2


�1
1

_
1

� bx2
0 = 
�1

1
bf3 +
�1

1
bF3(bx3 � 
2bx2) � f2 � F2bx3 � �1��


�1
1

_
1bx2
which yield the de�nitions (16). 2

3.1. Exact linearization of the error equation

We proceed like in the index one case: due to the
assumption that (1) is in index two DAE observer
normal form (13), the error equation is the linear time
varying system.�

_�
_ex3

�
=

�

1�1 
1F2

�2 � 
2�1 F3 � 
2F2

� �
�ex3

�
(19)

To get a linear error equation we need that F2 and
F3 have a particular structure.

Theorem 2 Let F3(bx1; bx2; u) = F3 + eF3(bx1; bx2; u)
where F 3 is a constant matrix. Then, if

1. there exists an invertible matrix 
1 such that

1F2 is constant

2. F3 can be chosen such that the matrix pair
fF2; F3g is observable and there exists a matrix

F
�

3 such that eF3 = F
�

3F2,

the error equation (19) can be made time invari-
ant and its modes can arbitrarily be placed by proper
choice of �1 and �2 for 
2 = F

�

3 .

Proof The proof is similar to that of Theorem 1. 2

4. Example

We use as example the model of a three-phase cur-
rent motor, which is also used in [2] and [10]. We
show on this model how to apply index one DAE ob-
server design if (1)-(2) is in index one DAE normal
form. Furthermore, we show that DAE index two ob-
server design may yield linear error dynamics even if
DAE index one observer design does not. This shows
that the extension of DAE observer design to index
two DAEs allows us to enlarge the class of nonlinear
systems with linearizable error dynamics.

We consider the following system.

_x1 = x2

_x2 = B1 � A1x2 �A2x3 sin(x1) +
1
2
sin(2x1)

_x3 = u�D1x3 +D2 cos(x1)
(20)

where x = (x1; x2; x3)
T is the state, u a control input

and B1, A1, A2 , D1 and D2 are constants.

4.1. Index one observer

For the index one DAE observer design we use the
output

y = (x1; x2)
T (21)

It can easily be seen that System (20) is in index one
DAE normal form (9). We have

f1(y; u) =

�
x2

B1 � A1x2 +
1
2
sin(2x1)

�

F1(y; u) =

�
0

�A2 sin(x1)

�

f2(y; u) = u+D2 cos(x1); F2(y; u) = �D1



To see that (20) has for the output (21) a linear time
invariant error equation we need the show that F1

and F2 verify Theorem 1. As F2(y) = F2 and for


1 =

�
1 0

0 � k3

A2 sin(x1)

�
(22)

(k3 is a constant scalar) the product 
1F1 = (0; k3)
T

is a constant matrix, the observer error admits a lin-
ear time invariant error equation. To see that the
poles of the error equation can be placed at arbi-
trary locations we need to show that the matrix pair
fF1; F2g is observable, that is, we need to show that

rank

2
64

F 2

F1F2

...

3
75 = 1

which is the case since F2 = �D1 is a constant scalar.

The result is consistent with [2] where it is shown
that System (20) admits a linear time invariant error
equation for the output (21). For

�1 =

�
k1 0

0 �k2

k3
A2 sin(x1)

�
; �2 = (k4; k5); 
2 = (0; 0)

and (22) we obtain the DAE index one observer

_bx1 = bx2 � _�1 + k1�1

_bx2 = B1 � A1bx2 �A2bx3 sin(bx1) + 1
2
sin(2bx1)+

A2 sin(bx1) 1
k3
( _�2 � k2�2)

_bx3 = u�D1bx3 +D2 cos(bx1) + k4�1 + k5�2

y1 = bx1
y2 = bx2

which has the linear time invariant error equation

2
4 _�1

_�2
_ex3

3
5 =

2
4 k1 0 0

0 k2 k3

k4 k5 �D3

3
5
2
4 �1

�2ex3
3
5

Now, instead of two observations, we take just one

y = x1 (23)

It can easily be seen that for this observation System
(20) is still in index one DAE observer normal form
(9) but Theorem 1 does not hold any longer. More
importantly, the conditions of nonlinear observer de-
sign of [2] or [7] (or [6] for the single output case)
applied on System (20) show that System (20) can-
not be transformed into nonlinear observer form and,
consequently, that it has no linear error equation for
the output (23). [6] gives su�cient conditions for the
single output case. Let System (20) de�ne _x = f(x),
where x = (x1; x2; x3)

T and y = h(x) be the system

output. By Proposition 3 of [6] the auxiliary vector
�eld g(x) de�ned by

g(x) = LgL
k

f
(h) =

�
0; 0 � k � n� 1
1; k = n� 1

is g(x)T = (0; 0;�(A2 sin(x1))
�1)T . To admit

a linear error equation the brackets [g ; ad1(f)g]
and [g ; ad3(f)g] must be zero. We obtain that
[g ; ad1(f)g] = 0, but [g ; ad3(f)g] 6= 0; hence, sys-
tem (20) admits no linear error equation.

4.2. Index two observer

If we use DAE index two observer design for System
(20) with the output (23) we obtain a linear time
invariant observer error equation.
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Figure 1 Without perturbation the estimate bx1 and
x1 (solid line), and bx2and x2 (dotted line) are iden-
tical for all t > 0. However, bx1 may have a jump at
t = 0 if bx1(0) 6= y(0). bx2 is impulsive at t = 0 ifbx1(0) 6= y(0) and has a jump if bx2(0) 6= _y(0).

In fact, System (20) is in index two DAE observer
normal form (14), where

f2(y; _y; u) = B1 � A1x2 +
1
2
sin(2x1)

F2(y; _y; u) = �A2 sin(x1)
f3(y; _y; u) = D2 sin(x1) + u

F3(y; _y; u) = �D3

Furthermore, F3 and F2 verify Theorem 2 since we
have F3 = F 3, the choice


1 = ��2=(A2 sin(x1)) (24)

yields 
1F2 = �2 and the pair fF2; F3g is observable
as F3 = D1 = const.. For �1 = ��1A2 sin(x1)=�2,
�2 = �3 and 
2 = 0 the DAE index two observer is

_bx1 = bx2
_bx2 = B1 �A1bx2 �A2bx3 sin(bx1) + 1

2
sin(2bx1)+

A2 sin(x2)
1
�2
( _� � �1�)

_bx3 = u�D1bx3 +D2 cos(bx1) + �3�

y = bx1
which is an index two DAE provide bx1 6= �k; k =
0;�1;�2; � � �. The error equation is�

_�
_~x3

�
=

�
�1 �2

�3 �D1

�
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Figure 2 The estimation error for x1 is zero for all
t > 0 (dotted line). With perturbation (solid line) the
estimation error is of the size of the perturbation v.
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Figure 3 The estimation error for x2 is zero for all
t > 0 (dashed line). With perturbation (solid line) the
estimation error is the �rst derivative of the pertura-
bation v (dotted line).

We note that the index two DAE observer for System
(20) is obtained from the index one DAE observer if
we eliminate _�1 in the �rst line, set �2 = �, k1 = 0,
k2 = �1, k3 = �2 k4 = 0 and k5 = �3.

To insure integrability we need to transform the index
two DAE into Hessenberg form, that is we need that
the observer (3) be in the special form (15). We have
for the observer (3)

0 =

2
664

_!1 � !2

_!3 � bf2(!1; !2; !4; u)� bF2(!1; !2; u)!3
_!4 � bf3(!1; !2; !4; u)� bF3(!1; !2; u)!3

y � !1

3
775

(bx1; bx2; bx3) = (!1; !2; !3)

where bf2 = D2 sin(!1) + u+ �3�,

bf3= ��2

A2 sin(!1)

�
B1�A1!2+

1
2
sin(2!1)+

�!
2

2
cos!1

A2 sin2(!1)

�
+�1�

bF2 = �A2 sin(!1), bF3 = �2 and � = !4 +
�2!1=(A2 sin(!1). The resulting DAE is in Hessen-
berg semi explicit index two form, which can safely
be integrated by BDF integration schemes with �xed
stepsize.

4.2.1 Numeric Simulation: For the follow-
ing computer simulation we use the same values for
the model parameters as in [10] and [2]:

A1 A2 B1 B2 D1 D2

0.2703 12.01 39.19 -48.04 0.3222 1.9

The index two DAE observer includes a sort of nu-
meric di�erentiation. To show the impact of a pertur-
bation in the observation we have perturbed the con-
straint by v(t) = 0:001 cos(10t), i.e., the perturbed
constraint is 0 = x̂1�y+v. The perturbation on bx1 is
obviously v(t) and that on bx2 is _v(t) = �0:01 cos(10t).
If the observation is not perturbed bx2 jumps imme-
diately to its true value x2. If bx1(0) 6= y(0) the ob-
servation bx2 is impulsive at t = 0. The simulation
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Figure 4 Independently of the perturbation the esti-
mate bx3 (dotted line) converges to the true value x3

(solid line). If the observation is perturbed bx3 remains
in the neighborhood of x3.
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Figure 5 Estimation error on x3 with (solid line)
and without perturbation (dotted line).

shows that the additional state � in the observer is a
relaxation for hidden constraints. The constraint

0 = y � bx1 (25)

includes two hidden constraints:

0 = _y � bx2 (26)

0 = �y � bf2(bx1; bx2; �) (27)
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Figure 6 Additional state �.
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Figure 7 Without perturbation �(t) goes to zero for
growing time. If the observation is perturbed � stays
in the neighborhood of zero. � is a measurement of
the violation of the hidden constraint (27) and the
observation error ex3.

where bf2(bx1; bx2; �) = (B1 � A1x̂2 � A2x̂3 sin(x̂1) +
1
2
sin(2x̂1)+


�1
1

_�+�1�). The integration by BDF in-
tegration schemes assures that the hidden constraint
(26) is veri�ed for all t > 0. The hidden constraint
(27) is relaxed by the supplementary state �. The

constraint error �y � bf2 goes asymptoticly to zero if
�! 0.

5. Conclusion

We have shown that by a slight generalization of in-
dex one DAE observer design of [10] and the intro-
duction of a normal form, DAE index one observer
design yields, applied on a special class of nonlinear
systems (which is de�ned by the normal form) ob-
servers with linear error dynamics. We have given
easy to test conditions for which the resulting error
equation can be made, in addition, time invariant.
If these conditions are veri�ed the construction of an
index one DAE observer with linear time invariant er-
ror dynamics is straightforward. We have shown that
the idea of DAE observer design can be extended to
the case where the DAE observer is in Hessenberg
semi explicit index two form. We have given a sec-
ond normal form for which index two DAE observer
design yields linear error dynamics. The conditions
for which we have a linear time invariant error equa-

tion are similar to that of the index one case. We
have shown on a simple example that index two DAE
observer design can yield a linear error equation even
if index one DAE observer design fails.
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