
Consistent Initial Conditions for Unstructured

Higher Index DAEs: A Computational Study

S. L. Campbell1 C. T. Kelley2 K. D. Yeomans

Department of Mathematics
North Carolina State University
Raleigh, NC 27695-8205 USA

ABSTRACT

Differential algebraic equations (DAEs) are im-
plicit systems of ordinary differential equations,
F (x′, x, t) = 0, for which the Jacobian Fx′ is always
singular. DAEs arise in many applications. Signifi-
cant progress has been made in developing numerical
methods for solving DAEs. Determination of con-
sistent initial conditions remains a difficult problem
especially for large higher index DAEs. This paper
looks at one approach for computing consistent ini-
tial conditions for these systems. The focus is on
initializing higher index DAE integrators but the ob-
servations are relevant to the general problem of ini-
tialization of DAE integrators.

1. INTRODUCTION

Many physical problems can be characterized as a
nonlinear implicit system of differential and algebraic
equations (DAE),

F (x′, x, t) = 0 (1)

with Fx′ = ∂F/∂x′ identically singular [1]. The index
ν, which will be defined later, is one measure of how
singular a DAE is. An ordinary differential equation
is index zero. A DAE is higher index if ν > 1. Many
of the problems in constrained mechanics are initially
formulated as index two and three DAEs. Systems
of index up to six naturally occur in mechanics if
actuator dynamics, joint flexibility, and other effects
are included [3]. Higher index DAEs also occur in
several other areas [1, 3].

A variety of numerical approaches have been sug-
gested for numerically integrating various classes of

1Research supported in part by the National Science Foun-
dation under DMS-9423705 and ECS-9500589.

2Research supported in part by the National Science Foun-
dation under DMS-9321938.

DAEs. However, it is generally agreed that the prob-
lem of initialization remains a difficult problem. With
a DAE not all x can be used for initial conditions. It
is often necessary to have initial values of x′, and
sometimes estimates for higher derivatives of x.

Most of the numerical methods for DAEs require that
the systems have special structure, or have indices of
only one or two. More general approaches have been
introduced. One approach for the numerical integra-
tion of general unstructured higher index DAEs is
being developed based on the derivative array [8].

There has been some previous work on the initializa-
tion of special classes of DAEs [2, 14, 15]. In this
paper we examine the problem of computing initial
values for the derivative array based general integra-
tors. These methods are described briefly in Section
3 and will be referred to as general DAE integrators.
There are other applications for these same computa-
tions but they will be examined elsewhere. However,
these other applications will influence our choice of
approaches to examine.

In initialization we will not have good predictors for
the starting values so we need to consider a more
global iterative scheme. The globalization of itera-
tive schemes has been well studied in the optimization
literature and several choices are available [10, 13].
However, the equations we consider, and the intended
application to initialization, has several special fea-
tures. The equations we must solve are now well un-
derstood near a solution.

In this paper we report on some computational stud-
ies designed to guide us in developing robust initial-
ization software. We are interested in the practicality
of the proposed approach, examining different com-
putational strategies, and in investigating the types
of challenges posed by the special types of nonlinear
equations that we must solve. Section 2 establishes
needed basic facts about higher index DAEs. Section

p. 1

3 describes the various types of general integrators
and how their initialization problems differ. Section
4 describes the special features of the initialization
and integration problems that impact on choice of
equation solving method. The results of the compu-
tational tests to date are in Section 5.

2. HIGHER INDEX DAES

In general, the solution x(t) of (1) is known to de-
pend on derivatives of the equations F . Suppose the
DAE (1) is a system of m equations in the (2m+ 1)-
dimensional variable (x′, x, t) and that Fx′ is always
singular. We also assume that F is sufficiently differ-
entiable in the variables (x′, x, t) so that all necessary
differentiations can be carried out. If (1) is differen-
tiated k times with respect to t, we get

F (x′, x, t) = 0
...

dk

dtk
F (x′, x, t) = 0.

These (k + 1)m equations are called the derivative
array equations [5], and denoted

G(z) = G(x′, w, x, t) = 0, (2)

where w = [x(2), · · · , x(k+1)], z = (x′, w, x, t).

The (differentiation) index ν of the DAE (1) is often
taken to be the least integer k for which (2) uniquely
determines x′ for consistent (x, t). If such a k exists,
then x′ is a function of just (x, t) (for consistent (x, t))
so that x′ = g(x, t). For general unstructured DAEs,
the index is a more subtle concept than this definition
suggests [4]. A DAE is called solvable if there exists
a smooth manifold of solutions [1, 4]. Many prob-
lems have a structure which allows one to differenti-
ate some of the equations less than other equations
thereby reducing the size of (2). While we do so in
practice we will not indicate this reduced differentia-
tion with our notation.

3. GENERAL DAE INTEGRATORS

We shall assume that the DAE is a solvable DAE in a
moderate number of variables and that formulas are
known for the equations making up the DAE. In this
section we describe two general approaches.

A matrix C is 1-full with respect to a component x1

of x if Cx = b uniquely determines x1 for consistent
b. We assume throughout this paper that there is an
integer k such that the following assumptions hold.

(A1) Sufficient smoothness of G.
(A2) Consistency of G = 0 as an algebraic equation.
(A3) J = [Gx′ Gw] is 1-full with respect

to x′ and has constant rank independent of
(x′, w, x, t).

(A4) J = [Gx′ Gw Gx] has full row rank inde-
pendent of (x′, w, x, t).

Conditions (A1)–(A4) frequently hold in practice and
are numerically verifiable using a combination of sym-
bolic and numeric software [5].

Implicit Coordinate Partitioning (ICP)
It is often desirable to preserve constraints. One can-
not just use the obvious projection to stay on the
solution manifold if the problem is unstructured. An
alternative is developed in [8] that is similar in prin-
ciple to the generalized coordinate partitioning used
in mechanics. However, we do not assume that any
of the constraints are known explicitly. Thus the co-
ordinates must be picked in an implicit manner. Also
we do not assume that the equations have any specific
structure such as being Euler-Lagrange equations. A
brief outline of this approach is the following.

We take a partition of the state variables x = (x1, x2)
so that

J̃ = [Gv Gw Gx1] (3)

has full row rank where v = x′. The variables x2

are used to parameterize the solution manifold lo-
cally. Define the variables z̃, ω by z̃ = ([x′, w], x1) =
(ω, x1). Thus z̃ is everything but x2 and ω is ev-
erything but x. Then G

z̃
is not only 1-full with

respect to x′ but it is also full row rank by the
choice of x1. Thus G

z̃
(z̃, x2, t)TG(z̃, x2, t) = 0 is

equivalent to G(z̃, x2, t) = 0. We may now use any
method of finding z̃ given (x2, t) which minimizes
C(z̃) = 1

2G(z̃, x2, t)TG(z̃, x2, t). We have chosen to
use a Gauss-Newton iteration.

Suppose then that we have a point (z̃0, x20, t0) where
G(z̃0, x20, t0) = 0 and our assumptions hold. Then
by [8] there is a partitioning such that the limit
(x′1
∗
, x′2
∗
, w∗, x∗1) of the Gauss Newton iteration sat-

isfies the fundamental equations

x′1
∗ = f1(x2, t) (4a)

x′2
∗ = f2(x2, t) (4b)
x∗1 = h(x2, t) (4c)

where f1, f2, h are defined by the limit of the iteration.

One step of the integration of the DAE now goes
as follows. Given xn−1 = (x1,n−1, x2,n−1) we ap-
ply a multistep integrator to (4a)–(4b) to get x̂n =
(x̂1,n, x̂2,n). A final function evaluation gives x′n =
(x′1,n, x

′
2,n) and x1,n = h(x̂2,n, tn). Then the value

p. 2

for xn is taken to be (x1,n, x̂2,n). Thus xn lies on the
solution manifold and satisfies all constraints. This
approach will be referred to here as the implicit co-
ordinate partitioning approach (ICP).

Explicit Integration (EI)
The explicit approach differs in several aspects from
ICP. At a given value of (t, x) we hold x fixed and do a
Gauss-Newton with the Jacobian [Gv, Gw] instead of
[Gv, Gw, Gx1]. This gives an ODE x′ = h(x, t) which
can now be integrated by a standard integrator.

Since the Jacobian is no longer full rank the linear
algebra requires a rank determination. Also there are
some subtleties with Jacobian reuse during integra-
tion. The constraints are not explicitly reimposed so
that there can be drift off the manifold. On the other
hand, the explicit approach does not require the mon-
itoring of the local coordinates and thus is simpler to
implement and somewhat more robust than ICP.

4. ALGORITHMIC ISSUES

Problem Features
The initialization of higher index DAEs has several
features that need to be kept in mind in the develop-
ing of numerical methods.

One option of many ODE and DAE integrators is for
the user to specify an absolute error tolerance that
the solution is to meet. In order to meet this error
tolerance it is essential that the initial conditions be
found to a given tolerance. This means that stopping
criteria must both guarantee that we are near a suit-
able initial condition and that the approximation is
within a prescribed error tolerance. In particular, our
stopping criteria must insure both small residual and
small steps.

With initialization we expect to have very poor initial
estimates of many of the initial values. Thus we need
a robust global algorithm. We assume we are dealing
with equations which are known explicitly. By using
automatic differentiation codes if necessary we can
assume that exact up to round off error Jacobians
are available at substantially less computational cost
than that of one matrix factorization [6].

It is fairly rare in our experience to just want an initial
condition. Usually there is a subset of the variables
which are known, or for which we have good esti-
mates. The number of these variables could be the
same, less than, or greater than the actual degrees
of freedom in the solution. If these quantities are
allowed to vary during the iteration, then the final
initial condition may have greatly changed in these

components. Thus we want to allow for the user to
specify a subset of the variables. We would like to
get a single method that works for any reasonable
specification by the user.

With any DAE integrator one usually needs not only
initial values of x but also x′. However with either the
EI approach or the ICP approach we have to initialize
the entire w vector for the nonlinear equation solver.
For a general unstructured problem, parts of the w
vector will be arbitrary. We shall consider three sce-
narios. The assumptions given on the Jacobians are
based on the theoretical results used in developing the
general integrators [5]. To simplify our notation we
let u denote whichever variables are allowed to vary
and we write G(u). The limit of the iteration is u∗

and J(u) = Gu(u).

Scenario 1 (S1): We merely seek a solution of
the derivative array equations. No components of z
are assumed known. The Jacobian is full row rank in
a neighborhood of u∗.

Scenario 2 (S2): A subset z2 of z is specified.
We assume that dim(z2) is less than the dimension
of the solution manifold of the DAE and that the
z2 variables are a subset of local coordinates for the
solutions of G(z) = 0. The Jacobian is full row rank
in a neighborhood of u∗.

Scenario 3 (S3): A subset z2 of z is specified.
We assume that dim(z2) is greater than the dimension
of the solution manifold of the DAE. The Jacobian
is assumed constant rank in a neighborhood of the
limit point. However the Jacobian is neither full row
nor full column rank. This scenario is also important
during the integration of a DAE by the EI approach.
We expect G(u∗) will be small but possibly nonzero.

There is a hybrid scenario where first a portion z1
of the variables are kept constant and the remain-
ing variables determined by an iteration. Then all
of the variables are allowed to vary. This could be
modified where in the final stage some of the z1 are
still fixed. The idea is to first reduce the error in
the less well known variables so that their “error” is
the same as the error of the better known variables.
Prior experience has suggested that this is sometimes
advantageous [9]. However, we will not discuss this
approach further here.

We assume the Jacobian has constant rank in a neigh-
borhood of u∗. There is no reason to assume that J
has constant rank during the iteration. The typical
situation that we consider is that the Jacobian is con-
stant rank throughout its domain except on certain
lower dimensional manifolds. During the iteration we
may pass near, or land on, these manifolds.

p. 3

Approaches Considered
There are three things to be decided for an iteration;
what direction to move, ∆un, how far to move in
that direction, and how to terminate the iteration.
Our iterations will take the form

un+1 = un + ρn∆un (5)

where 0 < ρn ≤ 1. In this paper we will terminate if
∆u and the residual ‖G‖ are less than tolerances EX
and ER. EX is to insure sufficient accuracy in the
solution. ER is to prevent prematurely stopping the
iteration.

Gauss-Newton: The plain Gauss-Newton itera-
tion uses ∆un = −J†(un)G(un) and ρn = 1:

un+1 = un − J†(un)G(un) (6)

The theory for Gauss-Newton (like ordinary Newton’s
method) requires the starting value to be near the so-
lution. The plain Gauss-Newton has performed rea-
sonably well in our prior experiments with integra-
tors. However, as to be expected, it performed very
poorly during our initialization tests with even mod-
erately poor initial guesses.

There are a variety of (minimization) algorithms and
some are being examined for use with DAEs. For
example, Biegler is currently examining sequential
linear programming (SLP) for chemical engineering
problems [11]. However, there are several reasons for
wanting to utilize a method based on a variant of the
Gauss-Newton iteration. One of the most important
for us is that such a method is based on information
of the type that we are using in the DAE integrator.
Also, in the numerical integrator it would be advan-
tageous to have a more robust iteration. A good ini-
tialization strategy might also prove beneficial in our
integrators if step size is being limited by the itera-
tion needing good starting values. This could permit
us to take larger time steps or to use lower order in-
tegrators on higher index DAEs.

There are many ways to pick ρn in the damped Gauss
Newton:

un+1 = un − ρnJ
†(un)G(un) (7)

We want the method to revert to plain Gauss New-
ton near u∗. We choose ρn so that the value of a
scalar test function Tn(u) decreases on the nth itera-
tion. There are a variety of line search methods. We
initially take ρn = 1 and then halve ρn until

‖Tn(un+1)‖ ≤ (1− αρn)‖Tn(un)‖ (8)

for a fixed α. The norm squared of the residual is one
natural choice of Tn

T [1]
n (u) = GT (u)G(u) = ‖G(u)‖2 (T1) (9)

There are several reasons to expect that a different
test function might be better. First, because of the
absolute error tolerances on u∗ we do not want to
terminate the iteration just on small residuals G(un).
Also, we expect that the derivative array equations
will sometimes have nontrivial condition numbers and
there may be ill conditioning encountered during the
iteration. Condition numbers of 104 or higher can be
routinely expected. The limit of the Gauss-Newton
iteration satisfies J†(u∗)G(u∗) = 0. Bock and Deufl-
hard have suggested the test function

T [2]
n (u) = ‖J†(un)G(u)‖2 (T2) (10)

The gradient of T [2]
n (u) is

∇T [2]
n (u) = G(u)T (J†(un))TJ†(un)J(u) (11)

At the current point un we have that ∇T [2]
n (un) is

the Gauss-Newton direction. Thus there is always a
ρ ≤ 1 which will cause T [2]

n to decrease.

Truncated Gauss Newton: If J = UΣV is the
SVD of J , let Σδ be Σ but with all singular values
below δ set to zero. Define Jδ = UΣδV and J†δ =
(Jδ)†. Often one wants δ greater than machine round-
off and below the smallest nonzero singular value of
J(u∗). This leads to the iteration

un+1 = un − ρnJ
†
δ (un)G(un) (12)

In all our calculations involving singular values the
small singular values are set to zero so we are always
using a Jδ instead of J .

Steepest Descent Residual Minimization:
One could try to minimize the residual ‖G(u)‖2 in
the direction of its gradient.

un+1 = un − ρnJ
T (un)G(un) (13)

Levenberg-Marquardt: During the iteration
one can encounter or pass close to singularities in the
rank of J . A classical way to handle singularities
during an iteration is Levenberg-Marquardt

un+1 = un − ρn(εnI + JTJ)−1JTG(un) (14)

with J evaluated at un and ε → 0 as un → u∗. If
J(u∗) has full row rank, then this method acts like
Gauss Newton near u∗. Away from u∗ it acts like
J†G in the direction of large singular values of J and
like 1

εJ
T in the direction of small singular values of

J . Because we have full row rank in Scenarios 1 and
2 instead of column rank, the variant

un+1 = un − ρnJ
T (εnI + JJT)−1G(un) (15)

is more appropriate. In the direction of large singular
values of J , (14) acts like (13).

p. 4

Proposition 1 Given the above definitions and as-
sumptions:

1. J†(u)G(u) �= 0 if and only if JT (u)G(u) �= 0.

2. J†δ (u)G(u) �= 0 implies that J†(u)G(u) �= 0.

3. J†(un)G(un), JT (ε + JJT)−1G, JT (un)G(un)
are descent directions for (T1) and (T2) if any
one of them is nonzero.

4. J†δG is a descent direction for (1) and (T2) if it
is nonzero.

It is worth noting that Proposition 1 need not be true
if other types of generalized inverses are used.

5. COMPUTATIONAL EXPERIMENTS

In order to get a feel for the behavior of these global-
ization methods we have conducted a series of com-
putational experiments. We will consider three test
problems which are taken from [6, 9, 8]. They rep-
resent different types of difficulties that can occur in
applications. The testing of additional larger exam-
ples is underway.

Test Problem 1. (Chemical Reactor): This
is an index three DAE in 4 variables. Many, but not
all of the terms are linear. All equations are differen-
tiated 3 times so that G has 16 equations.

Test Problem 2. (Shuttle): This is an index
three DAE in 7 variables [1]. It has a Hessenberg
structure which generally helps the iteration. The
equations are highly nonlinear. In this example we
exploit the Hessenberg structure of the equations and
differentiate equations from 1 to 3 times each. G has
20 equations. It is known that there are two values
of the control variable (bank angle β) that are close
to each other. Only β > 0 is physically correct.

Test Problem 3. (Torus): This is an index 3
DAE in 7 variables [8]. It is fully implicit. In addition,
at different times different subsets of initial conditions
can be taken fixed since the solution winds around a
torus. All equations are differentiated 3 times so that
G has 28 equations.

Implementation
The Jacobians were given by MAPLE generated
FORTRAN subroutines [6]. Our interest at this point
is in finding which methods are the most robust and
in examining problem behavior. Accordingly we com-
pute J†G using an SVD. The cost of integrator initial-
ization is amortized over the cost of performing the
integration which reduces the cost somewhat. How-
ever, it is important to speed up the linear algebra in

any final code. We took α = 10−4 and δ = 10−8 un-
less stated otherwise. δ is designed to ignore numer-
ically zero singular values rather than to regularize
an iteration with small, but nonzero, singular values.
Also, EX = ER = 10−9. The tolerances were set
so that we could examine the long run behavior of
the iteration. For initialization one might well want
different EX and ER values.

In our tests we started at a solution u∗. We then gen-
erated several random directions w scaled in a simi-
lar manner to u∗ and took starting values at different
distances in those directions. The initial point was
u∗ + 10γ−1w. Our intention was to examine the be-
havior of the iteration and the effect of increasingly
poor initial guesses. We experimented with several
versions of Levenberg-Marquardt. Having ε = 0 for
small ‖G‖ worked best. In what follows we made
the simple choice of ε = 10−4 if ‖G‖ > 10−4 oth-
erwise ε = 0. We also considered a test function
Tn(u) = ‖JT (ε + JJT)−1JTG‖ as well as T2. The
test functions performed the same.

Computational Results
We have run a large number of experimental runs
with Scenario 1. Plain Gauss Newton, as expected,
performed very poorly when we had poor initial start-
ing values. It clearly is not practical for initialization.
Not truncating small singular values when computing
J†G led to convergence problems. On the other hand
an aggressive truncation strategy designed to perform
regularization near singularities was also less reliable.
A small but numerically nonzero value worked best.

We found that implementing Levenberg-Marquardt
by forming (εI+JJT), solving (εI+JJT)y = G, and
then letting ∆u = −JT y frequently converged much
more slowly (or not at all) then computing an SVD
of J = UΣV and then letting ∆u = −V ΣT (εI +
ΣΣT)−1UTG. One explanation is that there is too
much loss of accuracy in the “normal equations” ver-
sion of Levenberg-Marquardt.

When the iterations converged the residual usually
met its stopping criteria a few iterations before ∆u
did. On the other hand, particularly with poor initial
guesses, there were several examples where ∆u met
the tolerance but we did not have small residuals. A
combined stopping criteria appears to be required.

In the remaining discussion P is undamped, D is
damped, GN is Gauss-Newton, LM is Levenberg-
Marquardt, R is test function T1 and B is function
T2. An * T1 or T2. GN is any of the tested Gauss-
Newton methods. Similarly for LM.

On the chemical reactor problem for γ = 0, 1, 2, GN
converged typically in 3, 4, and 5 iterations. LM

p. 5

also converged but in 2 to 3 times as many itera-
tions. However for γ = 3, PGN often failed. DGN*
converged more often. The same held for PLM and
DLM*. For some starting values DGN* converged
while DLM* did not. The situation was reversed for
other starting values.

The shuttle problem is much less well conditioned
with singular values ranging from approximately 10−4

to 104. LM often did not converge even for γ = 0 or
1. When it did converge it took 150-300 iterations.
On the other hand GN took 5-7 iterations for γ = 0
and 15-35 iterations for γ = 1. At γ = 2, PGN often
failed while DGN* worked some times.

For the torus problem, all the methods were essen-
tially the same for γ = 0, 1, 2, taking 4, 4-5, and
6-9 iterations respectively. PGN failed at γ = 3, 4.
DGNR failed at γ = 4. DGNB frequently converged
at γ = 4 but failed sometimes. On the other hand
DLM* converged for γ = 3, 4.

Finally we considered S2 where some of the variables
were fixed. In this test we fixed β, β′ and VR in the
shuttle problem. For technical reasons LM has not
been run yet. At γ = 1, GN converged in 11-13 iter-
ations. However, DGNR failed at γ = 2. The fixing
of some entries had the desired affect of making the
converged to value closer to the perturbed from value.
However, the Jacobian now has few columns. While
the Jacobian may still be full row rank it may be less
well conditioned. An examination of the singular val-
ues of J shows that this in fact occurs during this
iteration.

Considerably more testing is needed with more exam-
ples, especially larger dimensional ones, and at addi-
tional u∗ values. However, the tests reported here
suggest several conclusions.

6. CONCLUSIONS

Initialization by solving the derivative array appears
to be a practical approach for moderately sized prob-
lem especially if G and J are computed by auto-
matic differentiation codes. As to be expected, some
damping strategy is needed. A damped Gauss New-
ton method appears attractive. The fixing of certain
known values is advantageous but can have the affect
of increasing the condition number of Jacobians and
increasing the likelihood of passing near singularities.
The stopping criteria must enforce both small steps
and small residuals.

An examination of the Jacobians during the itera-
tions suggests that scaling may be important in some

problems, especially those where a large number of
variables are fixed. This will be examined elsewhere.

References
[1] K. E. Brenan, S. L. Campbell, and L. R. Pet-
zold, “Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations”, SIAM, 1996.
[2] P. N. Brown, A. C. Hindmarsh, and L. R.
Petzold, “Consistent initial condition calculation for
differential-algebraic systems”, preprint, 1995.
[3] S. L. Campbell, “High index differential alge-
braic equations”, Mech. Structures and Machines, 23
(1995), 199-222.
[4] S. L. Campbell and C. W. Gear, “The index of
general nonlinear DAEs”, Numer. Math., 72 (1995),
173-196.
[5] S. L. Campbell and E. Griepentrog, “Solvability
of general differential algebraic equations”, SIAM J.
Sci. Stat. Comp., 16 (1995), 257-270.
[6] S. L. Campbell and R. Hollenbeck, “Automatic
Differentiation and Implicit Differential Equations”,
Proc. Second International Workshop on Computa-
tional Differentiation, SIAM, 1996, to appear.
[7] S. L. Campbell and C. D. Meyer, Jr., “Gen-
eralized Inverses of Linear Transformations”, Dover
Press, New York, 1991.
[8] S. L. Campbell and E. Moore, “Constraint pre-
serving integrators for general nonlinear higher index
DAEs”, Numer. Math., 69 (1995), 383-399.
[9] S. L. Campbell and E. Moore, “A Coordi-
nate Free Approach for Constraint Preserving Higher
Index DAE Integrators”, Proc. 94 IMACS World
Congress on Scientific Computation, 65-68.
[10] J. E. Dennis, Jr., and R. B. Schnabel, “Nu-
merical Methods for Unconstrained Optimization and
Nonlinear Equations”, SIAM, 1996.
[11] V. Gopal and L. T. Biegler, “An optimization
approach to consistent initialization and reinitial-
ization after discontinuities of differential algebraic
equations”, preprint, 1995.
[12] E. Hairer, C. Lubich, and M. Roche, “The Nu-
merical Solution of Differential-Algebraic Systems by
Runge-Kutta Methods”, Springer-Verlag, New York,
1989.
[13] C. T. Kelley, “Iterative Methods for Linear and
Nonlinear Equations”, SIAM, 1995.
[14] B. J. Leimkuhler, L. R. Petzold, and C. W.
Gear, “Approximation methods for the consistent ini-
tialization of differential-algebraic systems of equa-
tions”, SIAM J. Numer. Anal, 28 (1991), 205-226.
[15] C. C. Pantelides, “The consistent initialization
of differential-algebraic systems”, SIAM J. Sci. Stat.
Comput., 9 (1988), 213-231.

p. 6

