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Abstract: This paper examines the design of observers for linear time varying
descriptor systems. An observer is designed for which the observer estimates are
also physically correct in that they satisfy the same constraints as the solutions of
the descriptor system. Careful attention is paid to ensuring that all quantities are
computable by numerical algorithms.

Résumé: On étudie dans ce papier la conception d’observateurs pour des systémes
linéaires & temps variant. On définit un observateur pour lequel les variables estimées
sont physiquement admissibles au sens ou elles satisfont les mémes contraintes que
les solutions du systeme descripteur. Une attention toute particuliere est portée aux
algorithmes numériques nécessaires au calcul de toutes les quantités utilisées.
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1. INTRODUCTION

Many physical systems are most easily initially
modeled as systems of differential and algebraic
equations (Brenan et al., 1996). These systems are
variously called descriptor systems, singular sys-
tems, or differential algebraic equations (DAEs).
Reduction to an explicit model may require sim-
plification with the accompanying loss of accu-
racy, loss of sparsity, substantial effort, or even
be impossible.

There has been a considerable of amount of re-
search done on the design of observers for lin-
ear time invariant descriptor systems (Dai, 1989;
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Hou et al., 1993; Pearson et al., 1988; Shin and
Kabamba, 1988). However, many descriptor sys-
tems of interest are nonlinear or linear time
varying. The use of time invariant linearizations
sometimes results in incorrect approximations
(Campbell, 1995). Nonlinear systems, if correctly
linearized along a trajectory, naturally result in
linear time varying DAEs. There has been very
little work on the design of observers for general
linear time varying DAFEs.

This paper will examine the design of observers for
general linear time varying DAEs. Careful atten-
tion will be paid to which quantities are known
and which are computed to make sure that the
design can actually be implemented. Much of the
existing literature on nonlinear or time varying
systems makes extensive use of nonlinear coor-
dinate changes and differentiations of computed



quantities. While this is theoretically attractive,
it sometimes requires symbolic manipulation in
order to actually implement the approach. This is
often not practical for large or complex systems
due to expression swell. The approach in this
paper is different. In this paper, a computable
quantity is one that is derived only by differen-
tiations of the original equations followed by nu-
merical calculations. The differentiation need not
be done symbolically. Often the best option will
be to use automatic differentiation (AD) codes
(Campbell and Hollenbeck, 1996). AD software
rapidly computes first and higher order derivatives
at a given time up to round off error without the
expression swell and memory use of a symbolic
approach. Thus, while differentiation may be per-
mitted in a proof or the verification of a formula,
no explicit differentiation of computed quantities
is permitted in the algorithms. How they can be
reliably computed in cases where derivatives are
needed will be discussed. It is assumed that the
reader is familiar with basic DAE properties such
as the index (Brenan et al., 1996). In order to keep
track of how the various information is derived, a
hat will often be used for computed quantities.

2. THE BASIC PROBLEM

The basic system to be considered is the descrip-
tor system

E(t)x' =F(t)x + B(t)u+ g(t) (1)
y =H(t)x (2)

where u is a known control. g occurs because
the system may have come from linearization
along a function which may or may not be a
solution of the original system. It is assumed that
E.F, B, H, g are known matrix valued functions.
E is not assumed to have constant rank. The
observer design problem considered here is to find
K,L,M, R so that the system

=L(t)z+M(t)(y — H(t)z)  (3)
w=R(t)z (4)

has the properties:

(P1) tlim ||lx —wl = 0.

(P2) System (3)-(4) can be numerically inte-
grated when the observer is implemented.

(P3) The degree of freedom in w (dimension of
the solution manifold of (3) projected onto w by

R) is the same as the dimension of the solution
manifold of (1).

Requirement (P3) is motivated by problems where
the constraint manifold represents physical con-
straints. The goal is to have an observation which

is also physically correct. Note that because K(t)
is singular, (4) includes the possibility that w
depends directly on y, z.

3. IMPLICIT CONSTRAINT PRESERVING
APPROACH

In this paper, the only nonnumerical operation al-
lowed in algorithms is possibly the differentiation
of the known functions E,F,B,H,u,q. A direct
duplication of the usual theory would take K = E
and L = F in (3). However, z would then involve
derivatives of y if Kz’ + Lz is a higher index DAE.
In this paper u is considered known so that while
not desirable, implicit or explicit differentiation of
u will be allowed. However, y is usually measured.
Differentiation of y is to be avoided. Accordingly,
a different approach must be considered.

Section 6 gives algorithms for numerically com-
puting A, B, g, G, h,V such that the solutions of
(1)-(2) are precisely the solutions of

X' =Ax+Bv+g (5)
0=G(t)x+h (6)
y=H(t)x (7)

v is composed of derivatives of the known u.
h depends on v,g. (6) is an invariant of (5)
for this u and characterizes the consistent initial
conditions (solution manifold) at time ¢. (5)-(6)
will be referred to as the explicit representation
of (1) and (5)-(7) as the explicit representation
of (1)-(2). (6) is needed in order to insure (P3).
However, as shown in Example 1, a system that
is stabilizable with (6) might not be stabilizable
without (6).

It is important to note that A is not unique and
depends on the way the completion is computed.
In general it is possible to_compute any matrix
coefficient of the form A + ©G (Campbell, 1992).
If the numerical algorithm computing the coef-
ficients makes discrete decisions, such as choice
of pivots, ® can depend discontinuously on ¢.
® will be continuous if a numerical method like
the singular value decomposition (SVD) is used.
However, all possible A agree on the nullspace
of G. There is uniqueness of A if (6) is enforced
but not if (6) not enforced since all completions
agree on the solution manifold. This is another
reason to want the observer to satisfy these same
constraints.

An obvious first form for an observer of (5)-(7), if
(6) is preserved, would be

X+Bv+g+ Ly — HX) (8)
0=G(®)x+h (9)



where L is to be determined. There are two
different issues. One is to have an algorithm for
computing L. The second problem is that given
that L is determined, it is still necessary to be
able to integrate the DAE (8)-(9).

3.1 The feedback L

Let € = X — x be the error in the observer (8)-
(9). Then (5)-(9) imply that e satisfies the error
equation

¢ =Ae — LHe (10)
0=Ge (11)

The nullspace of G is computable and indepen-
dent of the particular algorithm used to get G.
Let P =1 — GTG which is the unique orthogonal
projection onto the nullspace of G (Campbell
and Meyer, 1991). This will be smooth since the
nullspace of G varies smoothly. If G’ is known,
then P’ is computable. How to do this will be
discussed in Section 6.

Let a smooth SVD of P be

f’:ULI)g]UT:Uf’UT (12)

Note that P is constant. The error equation (10)-
(11) can be written

e =(A-LH)e (13)
0=(I-P)e (14)
or equivalently,
(Pe) = (A — LH)Pe (15)
0=(I-P)e (16)

Let n = UTe. Then this system is

(UPn) = (A — LH)UPq (17)
0=U(I-P)y (18)
Thus

U'Pn+UPy =(A-LH)UPp  (19)
0=mn, (20)
Define

0, 6,
©; O4

A1 Ay

_uTu = { ] ,UTAU = [AS AJ@I)

where the partition is conformal with P. Multiply-
ing (19) on the left by U” and combining terms
gives

n = (01 +A)n, — (U'LHU);um, (22)
0=(©;3 + Az)n, — (U'LHU)oi7;  (23)

0=mn, (24)

The invariance of the range of P implies that
®3 + A3z = 0. On the other hand, the error equa-
tions are to have the same dimensional solution

manifold as x,X. Thus (23) must hold without
constraining n,. This gives

ny = (01 +A)n, — (UTLHU);m;  (25)
0=mn, (26)

with the requirement that L be chosen so that

(UTLHU),, =0 (27)

Partition the orthogonal matrix U as

U = [Uy, Uy (28)
Then (25)-(26) is

n=(01+ A1)y, — (UTI:HUI)TII (29)
0=mn, (30)

with the requirement (27) that

UJLHU, =0 (31)
Let L = U;K. Then (31) holds and (29)-(30) is

N, =(01+ A1), — (KHUy)np,  (32)
0=mn, (33)

K has to be chosen so that (32) is stable. That is,
it must solve the output stabilization problem

N1 =(01+A1)n +u (34)
y=HUn, (35)

In the time invariant case the output stabilization
of (34)-(35) is equivalent to the full state feedback
stabilization of

m = (0] + AD)n, + (HU) ™u  (36)

However, this is not true for arbitrary linear time
varying systems since the stability of z’ = D(t)z
is independent of the stability of z’ = DT (t)z.

2t
_é e_ 1}. Define
z' = Dz to be symmetrically asymptotically stable
if z = Dz and z’ = D7z are both asymptot-
ically stable. There are numerous conditions in
the literature which guarantee symmetric asymp-
totic stability for linear time varying systems such
as Lemma 6.2 of (Middleton et al., 1988). The

A simple example is D(t) = {



problem of determining which of these results is
the most useful for the algorithms being devel-
oped here is still under investigation. Stabilizing
feedback for uniformly controllable systems is dis-
cussed in (Ikeda et al., 1972). The next theorem
summarizes this discussion.

Theorem 1. Suppose that (1) is a solvable DAE
with known smooth coefficients. Let A, B, g, G, h,

v be from the explicit representation (5)-(6). Let
©1, A1, U; be defined by (21), (28). Suppose (36)

is uniformly controllable. Let K~ be a stabilizing
feedback and suppose that the closed loop system
is symmetrically asymptotically stable. Let L =
U, K. Then (8)-(9) is an observer for (1)-(2).

4. NO CONSTRAINT APPROACH

This section briefly discusses the importance of
including the constraints in the observer. One
could try to ignore the constraints (6) and work
with (5) and (7)

x'=Ax+Bv+g (37)
y=H(t)x (38)
This appears to be a simpler problem. However,

it is possible that the extra dynamics might be
neither observable nor physical.

Ezample 1. As a simple example of (5)-(7) con-
sider the DAE

ri=x1 +12 4V (39)
Th=To (40)
0=, (41)
Y= (42)

For this problem it is easy to stabilize the error
equation on the solution manifold (z2 = 0) with
feedback. However, the system

Ti=x1 +T2 4V (43)
Th =19 (44)
y=1 (45)

cannot be stabilized since the zs dynamics are
uncontrollable.

5. INTEGRATION OF THE OBSERVER

(8)-(9) is an overdetermined DAE and thus the
standard DAE integrators may have problems.
Some overdetermined DAE integrators exist such
as ODASSL which was developed for mechanics
problems (Fuhrer and Leimkuhler, 1991).

One option would be to follow Gear (Brenan et
al., 1996) and introduce a dummy multiplier to
get the DAE observer

X' =AX+Bv+g+L(y — HX) + G p (46)
0=G(t)X+h (47)
w=X (48)

This is in the form of (3)-(4) with z = { },

L ol. The DAE to be
integrated, (46)-(47) is a semi-explicit index two
DAE in (X, pt) as long as G has full row rank. Thus
this system can be integrated with a variety of
BDF and implicit Runge Kutta methods (Brenan

et al., 1996).

P=[ 0, K-=

Note that the value of p is not important. Re-
placing o by A’ in (46) gives an index one DAE.
However, the solutions of interest are those for
which A = 0 so that A needs to approach zero.
This leads to considering the following observer

X' =A%+ Bv + g + L(y — HX)

+GTN +TA (49)
0=G(®)x+h (50)
w=X (51)

This is in the form of (3)-(4) with z = [i}

_ _[1-GT
P=]I 0],andK{O 0 ]

Theorem 2. Assume that L is chosen so that the
conditions of Theorem 1 hold. Thus the solution
of the error equation (10)-(11) satisfies € — O.
Let T = aGT with o > 0. Then (49)-(51) is an
observer for (1)-(2). Furthermore A = Age ™%

Proof. (49)-(50) is an index one system whose
solution manifold is determined by the constraints
(50). Thus it suffices to prove that € — 0. If X, A
are given by (49)-(50), then &, X satisfy

e =Ae —LHe + G"X +aGTA  (52)
0=Ge (53)

Such an observer could be implemented by just
integrating (52)-(53). However, in the proof it is
helpful to assume that G is smooth. Differentiat-
ing (53) and then solving for A" gives

e =(A—LH)e +aGTA
Gt ((é’ +GA — GLH)e + aééTA)
— (A —LH)e — G'(G' + GA — GLH)e (54)



N =—(GGT)"'((G'+ GA — GLH)e
+aGGT ) (55)
where GI = GT(GGT)~!. The only solutions
of (54)-(55) of interest are those which are also

solutions of (52)-(53). That is, solutions where
Pe = e. Let P be the solution of

P =AP-PA, P(t)=Pt)

Then from (Terrell, 1994), P
all t and P commutes with the operator 4 _ A,

Pisa prOJectlon for

Furthermore, P and P have the same ranges since
the range of P is invariant under the differential
equatlon x' = Ax. Thus GP = 0 and G'P +
GP' = 0. Hence

&'P— _GP — G[AP _ PA]— _GAP
so that G'e = —GAE By construction PLHP =
LHP so that PLHP = LHP. Hence GLHe =

GLHPe = GPLHPe = 0. Thus (54)-(55) sim-

plifies to
e =(A—LH)e (56)
N =—a\ (57)
and the result follows. O

6. COMPUTATION OF NEEDED ARRAYS

This section will summarize some facts concerning
the computation of the observer coefficients from
(Campbell, 1987; Campbell, 1992). Suppose the
DAE is

E(t)x'(t) + F(t)x(t) = b(t) (58)

where b(t) = B(t)u(¢) if there is a control.
Definition 1. The system E(t)x’ + F(t)x = b(t)
is solvable on the interval 7 if

(1) For every sufficiently smooth b on Z, there is
a solution to the descriptor system.

(2) Solutions are defined on all of Z.

(3) Solutions are uniquely determined by their
values at any tg in Z.

Differentiating the equation (58) j times gives the
system of equations

[Fj €] [XJFbj (59)
where
F b ,
F' b’ x
Fj= . ,bj = )y Xj =
£ L) U

E 0 - -0
E' +F E o0
£ = E’"+2F 2E'+FE
* * x .0

EY 4+ jFU-D &« &« « E

Theorem §. Suppose that (58) is solvable on the
interval Z and that E,F are 2n-times differen-
tiable. Then forn =n +1

& has constant rank on 7 (60)
Ex is 1-full with respect to x’ (61)
[F; €] has full row rank for 1 <i <7 (62)

If the coefficients E, F are infinitely differentiable,
then Theorem 3 provides sufficient as well as nec-
essary conditions for solvability. If (62) holds, and
u+ 1 is the smallest value of 7 that satisfies the
conditions (60), (61) of Theorem 3, then  is called
the index v of the descriptor system (58). For
linear time invariant descriptor systems, the index
is the same as the index of the pencil AE + F.
However, for time varying solvable descriptor sys-
tems, the pencil AE 4+ F need not be regular, and
if the pencil is regular its index need not be that
of the descriptor system.

Theorem 3 is important since it assures us that
if the descriptor system (58) is solvable, then
&€; will have constant rank even if E does not.
Thus a computation concerning £€; can be well
conditioned.

Lemma 1. Suppose that (58) is a solvable index
v descriptor system. Then for any ¢ > 0, the row
echelon form of [E,4¢|F,1e|byie] is

Lies1yxn(es1) O @1 EM
0 R| Q2 | b2 (63)
0p>< n(€+1) oM bs

where R and M have full row rank. Furthermore,
the solutions of Mx = bg are independent of 4.

Suppose that (58) is solvable and index v. Per-
forming orthogonal row operations on [€, F,|b,]
yields

Ql 0 Qz El
0 S Qg b/2\ (64)
0 0| G |-h

where S, G are full row rank, G is p x n, and QAl
is n x n and invertible. The equation Gx = h
determines the solution manifold of (58) at time
t. In addition,

=-Q;'Qz, g=Q;'by (65)



Computed this way, A can have discontinuities
where the pivoting strategy changes. A, g in (5)
can be computed smoothly by noting that £; is
constant rank and thus its Moore Penrose inverse
is continuous. Then

A
5}3:[*},5%]:[

The computation of L requires the quantities
U17A1 and @1 = —U’{Ull Thus Ul,Al,Ull are
needed. One could try to work with G. However,
€ and 5;- are readily available. Thus the following
approach can be used.

By assumption &; has constant rank. From
(Kunkel and Mehrmann, 1991) there is a smooth
W(t) such that

ver- e - [§

where R has full row rank. Numerical algorithms
for computation of W and W' at a given ¢ are in
(Kunkel and Mehrmann, 1991). Let G = Wy F ;.
.’F; can be computed by differentiating the known
F(t) one more time. W}, is computable by the
algorithm in (Kunkel and Mehrmann, 1991). Thus

G = WLF; + WoF,

is computable. Note that P =1-GIiG. By a
slight modification the arguments in (Kunkel and
Mehrmann, 1991), it follows that

P' = —(G'G'P) - (G'G'P)”

so that P’ is computable.

Once f’,l/s’ are known, computation of U,U’
for the U in (12) can be done by using the
analytic singular value decomposition in (Kunkel
and Mehrmann, 1991).

Thus all the needed quantities are computable.
Before such an observer can be utilized, of course,
it is necessary to develop efficient algorithms.
Also the computation of K must be meshed with
the computation of the other quantities. These
technical issues will be discussed elsewhere.

7. CONCLUSION

This paper has described a procedure for comput-
ing an observer for a general linear time varying
solvable plant. It has been shown how each of the
terms is computable.
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