
Convergence of Nonconvergent IRK Discretizations

of Optimal Control Problems

J. T. Betts∗ N. Biehn† S. L. Campbell‡ W. P. Huffman§

Abstract

It has been observed that optimization codes are sometimes able to solve state constrained optimal control
problems with discretizations which do not converge when used as an integrator on the constrained dynamics.
Understanding this phenomenon could lead to a more robust design for direct transcription codes as well as better
test problems. This paper examines how this phenomena can occur. The difference between solving index three Dif-
ferential Algebraic Equations (DAEs) using the trapezoid method in the context of direct transcription for optimal
control problems and a straight forward Implicit Runge-Kutta formulation of the same trapezoidal discretization
is analyzed. It is shown through numerical experience and theory that the two can differ as much as O(1/h3) in
the control. Moreover, a small sacrifice in the accuracy of the states in the early stages of the trapezoidal method
allows better accuracy in the control, where more precise solutions converge to an incorrect solution. The theoretical
results are used to explain computational observations.
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1 Introduction

This paper studies the difference between solving index 3 differential algebraic equations (DAEs) using the trapezoid
method (TR) in the direct transcription of optimal control problems versus a straight forward implementation of the
implicit Runge-Kutta formulation (IRK) of the trapezoid rule. Many optimal control problems contain inequality path
constraints on the states and/or controls. Along the constraints, the resulting system becomes a DAE. Depending on
which set of variables are constrained, a low or high index DAE results. For more on DAEs and their indices, see [4].

The direct transcription software SOCS (Sparse Optimal Control Software) developed by Boeing [1, 2], is used
throughout this paper. The results obtained are relevant to other direct transcription algorithms with similar strategies.
In particular, SOCS passes the discretized problem directly to the NLP solver and does not first integrate the dynamics
to reduce the dimension of the problem. The discretization formulas used by SOCS are mathematically equivalent to
the Lobatto IIIA formulas TR and Hermite-Simpson (HS). These methods are symmetric, stiffly stable and produce
desirable sparsity patterns in the Jacobians of the defect constraints in the associated Non-Linear Program (NLP).
They also can be implemented as collocation methods. This paper is concerned primarily with TR. Computational
experience and a more technical analysis shows the same phenomenon occurring when using HS.

TR implemented as an IRK converges for DAEs of index 0,1, and 2. For problems with index greater than 2,
examples can be constructed for which TR converges to an incorrect solution [3, 7]. Numerical experience has shown
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that when used in SOCS, TR can converge to the true optimal solution while the straight forward IRK formulation
does not [3]. There are two questions to be resolved. One is how SOCS is able to converge. The second is why
does SOCS converge. This paper begins the task of understanding this phenomena by answering the “how” question.
Considerable research exists on the convergence of discretizations of optimization problems. We cite only [5, 6].
However, previous work on the state constrained problem always assumes that the discretization converges on a
problem with the constraint holding identically. This analysis does not apply to the phenomena investigated here.

The next section presents the main result of this paper which theoretically predicts the difference between the direct
transcription and IRK solutions. Numerical experiments are then given in Section 3. In order to avoid confusion we
use SOCS TR for the SOCS solution using the TR discretization and IRK TR for the TR solution implemented as
an IRK when constraints are active. Finally, our investigations are motivated by the optimization of tool paths. In
these problems, complexity and problem size sometimes forces the termination of the iterations in SOCS at coarser
grids than those required for termination according to the termination criteria. For this reason we are very interested
not only in behavior on sufficiently fine grids but also on “coarser” grids. A full version of this paper with proofs is
available on third author’s web site.

2 The Control Problem & Main Theorem

The optimal control problem studied here contains an objective function, state equations, and constraints;

J(u) = φ(tf ) +
∫ tf

t0

L(y, u, t) dt(1a)

y′(t) = f(y(t), u(t), t), y(t0) = y0(1b)
yL ≤ y(t) ≤ yU , uL ≤ u(t) ≤ uU(1c)
gL ≤ g(y(t), u(t), t) ≤ gU(1d)

The continuous optimal control problem is then transcribed to a finite dimensional Non-Linear Program (NLP).
Let y(tk), u(tk) be yk, uk. Then [y0, u0, y1, u1, . . . , yN , uN ]T are the NLP variables with N + 1 grid points. Using TR,
we approximate the state equations using the defect constraints 0 = yk−yk−1− hk

2 (f(yk, uk, tk)+f(yk−1, uk−1, tk−1)).
The objective function (1a) is approximated using a trapezoidal quadrature. The NLP is then solved using a sparse
sequential quadratic programming algorithm whose solution is a discrete approximation to the continuous optimal
control problem [2].

Consider the following optimal control problem,

J(u) = min
u

∫ 4

0

x2(t) + 10−3u2(t) dt(2a)

x′ = v, v′ = u(2b)
0 ≤ x− 15 + (t− 4)4(2c)

x(0) = 5, v(0) = 1(2d)

The constraint (2c) is active on the interval
[
34
15 , 4

]
giving the index 3 DAE (3) in (x, v, u) on [t0, tf ] =

[
34
15 , 4

]
;

x′ = v, v′ = u(3a)
x = 15− (t− 4)4(3b)

x(t0) = 15− (t0 − 4)4, v(t0) = −4(t0 − 4)3, u(t0) = −12(t0 − 4)2(3c)

Figure 1 shows u obtained by IRK TR and SOCS TR with N = 10. Notice that SOCS TR is much closer to the
true solution. In fact, the solution given by SOCS seems to converge with N , while the IRK solution does not. If
this convergence can be fully and rigorously understood, then it might be possible to safely use direct transcription
codes with such discretizations when solving some classes of higher index DAEs. This paper will discuss how these
two similar methods can differ.

Since the numerical solutions of the control differ by large amounts, there must be a fundamental difference between
using TR directly on the DAE and in a direct transcription formulation. The NLP solution is known to satisfy the given
constraints up to a tolerance which is looser than the accuracy to which the IRK equations are usually solved. It was
suggsted in [3] that this NLP “slop” provides one possible explanation for the large differences in the computed control
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Figure 1a: SOCS TR control and true solution Figure 1b: IRK TR control and true solution

between IRK TR and SOCS TR. We will see that the “slop conjecture” can account for computational observations
on fine grids when SOCS is close to convergence but connot fully explain what is observed on coarser grids. A careful
analysis of an index three problem proves enlightening.

Consider the state equations with constraints (4),

x′ = Ax+Bu(4a)
0 ≤ Cx− ĝ(t)(4b)

where A is m×m, B is m× q, C is r×m and ĝ(t) is r× 1. Suppose that the optimal solution has (4b) as an equality
constraint over an interval [a, b]. This gives us a DAE (4) in (x, u) along this interval which can be written as

Ey′ = Ây − g(t)(5)

with E =
[
Im 0
0 0

]
, Â =

[
A B
C 0

]
, g(t) =

[
0
ĝ(t)

]
, y =

[
x
u

]
. Then TR for (5) implemented as an IRK is

EY ′1 − Âyn−1 = −g(tn−1)(6a)

EY ′2 − Âyn−1 − h
2 Â(Y ′1 + Y ′2) = −g(tn)(6b)

yn = yn−1 + h
2 (Y ′1 + Y ′2)(6c)

where the Y ′i , are the stage derivatives for i = 1, 2. Let Y ′i =
[
X ′i
U ′i

]
, i = 1, 2. Then (6) can be rewritten as

X ′1 = Axn−1 +Bun−1(7a)

X ′2 = A(xn−1 +
h

2
(X ′1 +X ′2)) +Bun(7b)

0 = Cxn − ĝ(tn)(7c)

xn = xn−1 +
h

2
(X ′1 +X ′2)(7d)

In SOCS TR the numerical solution (x̃, ũ) must satisfy (8) at every mesh point to be considered feasible;

x̃n − x̃n−1 −
h

2
(Ax̃n−1 +Bũn−1 +Ax̃n +Bũn) + δn−1 = 0(8a)

Cx̃n − ĝn + εn−1 = 0(8b)

δ, ε are tolerances for the accuracy to which we solve (8a), (8b). We initially view these as the tolerances in the NLP
solve. Define X̃ ′1 = Ax̃n−1 +Bũn−1, X̃ ′2 = Ax̃n +Bũn. Then a calculation shows that we may write (8) as

X̃ ′1 = Ax̃n−1 +Bũn−1(9a)

X̃ ′2 = A(x̃n−1 +
h

2
(X̃ ′1 + X̃ ′2)) +Bũn +Aδn−1(9b)

x̃n = x̃n−1 +
h

2
(X̃ ′1 + X̃ ′2) + δn−1(9c)

Cx̃n = ĝn + εn−1(9d)
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Comparing (7) to (9) we see that we may consider the SOCS solution as a perturbation of the IRK solution. If we
subtract (7) from (8) we get a system for the difference between the SOCS TR and the IRK TR solutions in the form,

Gzn = Hzn−1 + γn−1(10)

G =



I 0 −h2 I −h2 I
0 −B −h2A I − h

2A
0 0 I 0
C 0 0 0


 , H =



I 0 0 0
A 0 0 0
A B 0 0
0 0 0 0


 , γn =



δn
Aδn
0
εn


 , zn =



x̃n − xn
ũn − un
X̃ ′1 −X ′1
X̃ ′2 −X ′2


(11)

Suppose that G is invertible and solve (10) for zn,

zn+1 = G−1Hzn +G−1γn(12)

The solution of (12) is zk = (G−1H)kz0 +
∑k−1
j=0 (G−1H)k−j−1G−1γj . We assume that z0 = 0, and thus obtain the

difference between the IRK and SOCS TR solutions starting from the same initial conditions,

zk =
k−1∑
j=0

(G−1H)k−j−1G−1γj(13)

The analysis and discussion that follows differs from the usual error analysis of IRK methods. It is not enough to
convert (13) to an order estimate. We need to know the actual size of the perturbation zk and we need to consider
mesh widths that may not be small. These results are given in Theorem 1.

(13) holds for all DAEs of index 1 or higher. We know that IRK TR converges for DAEs of index 1 and 2.
However, for DAEs whose index is greater than 2, IRK TR may not converge [3]. We assume the DAE (5) is an index
3 problem. Then CB must be singular. For time invariant problems we can decouple the different index subsystems
using linear time invariant coordinate changes. Thus we may assume that CB = 0. Without loss of generality
we may further assume that C is full row rank, B is full column rank and there exist matrices P̂ and Q̂ so that

P̂CQ̂−1 =
[
I 0

]
, Q̂B =

[
0
I

]
. Thus we may assume that

C =
[
I 0

]
, B =

[
0
I

]
(14)

A linear time invariant index 3 DAE with CB = 0 must also have CAB invertible. Define Q = I − h
2A and let

Q =
[
Q1 Q2

Q3 Q4

]
, A =

[
A1 A2

A3 A4

]
where the partitioning conforms to C and B. From the special form given for

C and B we know that CAB is invertible if and only if A2 is invertible. Q is invertible for all but a finite number
of nonzero h. The value of Q2 = C(I − h

2A)−1B is given analytically in terms of A by Q2 = −2hA2(−4I + 2hA4 +
2hA1 − h2A1A4 + h2A2A3)−1 which is invertible for small nonzero h since A2 is invertible. Then Q2 is invertible for
all but a finite number of h. With these assumptions we may now state the following theorem.

Theorem 2.1 Suppose that the DAE (5) is index three and (7), (9), (14) hold. Assume that CAB and C(I− h
2A)−1B

are invertible. Then the difference in the states between the IRK TR and SOCS TR solutions is

x̄k − xk =
k−1∑
j=0

(−1)k−1−j
( [

0 0
−Q4Q

−1
2 I

]
δj +

[
0 0

−h2W 0

]
Aδj +

[
0

−Y +Q4Q
−1
2

]
εj

)
(15)

The difference between the controls is

ūk − uk =
k−1∑
j=0

(−1)k−1−j 2
h

{
[−2(k − j − 1)Q4Q

−1
2 −Q−1

2 2(k − j − 1)I]δj

+
h

2
[−2(k − j − 1)W −Q−1

2 Q1 − I]Aδj + [−2(k − j − 2)Y + 2Q−1
2 Q1 + 2(k − j − 1)Q4Q

−1
2 ]εk

}
(16)

where W = Q4Q
−1
2 Q1 −Q3, Y = Q4Q

−1
2 − 2W .

Page restrictions prohibits giving the proof. Note that the controls can differ considerably depending on the size
of δ and ε. If we suppose that we are on the interval [0, 1], then the value of k at the end of the interval would act
like 1/h. Q−1

2 may possess a 1/h factor as well. Thus a single δj will introduce a difference between the controls of at
least ūk−uk ∼ O

(
1
h3

)
. A constant perturbation δ is also O(h−3) due to cancelation. The worst case given by δj with

alternating sign is O(h−4). This is not possible on coarse grids because of the one sided nature of constraint chatter.
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3 Numerical Experiments

The preceding analysis shows that the feasible solutions examined by SOCS can differ substantially from the IRK
solutions. Once h is sufficiently small, approximations of the true optimal solution become feasible. In order to
determine if this is the full story we conduct some computational tests on coarser grids. The numerical solutions on
[34/15, 4], N = 10, for (2) obtained from SOCS TR and IRK TR were subtracted The results are given in Table 1a.

Time |x̃− x| |ṽ − v| |ũ− u|
2.2667 0.0000 0.0000 0.0000
2.4593 0.0070 0.0726 0.7540
2.6519 0.0000 0.1452 3.0159
2.8444 0.0000 0.1452 6.0318
3.0370 0.0000 0.1452 9.0477
3.2296 0.0000 0.1452 12.0637
3.4222 0.0000 0.1452 15.0796
3.6148 0.0000 0.1452 18.0955
3.8074 0.0000 0.1452 21.1114
4.0000 0 0.1452 24.1273

|ṽ − v| |ũ− u|
Actual Diff Pred. Diff. Actual Diff. Pred. Diff.

0.0000 0 0.0000 0
0.0726 0.0727 0.7540 0.7548
0.1452 0.1454 3.0159 3.0193
0.1452 0.1454 6.0318 6.0449
0.1452 0.1454 9.0477 9.0673
0.1452 0.1454 12.0637 12.0897
0.1452 0.1454 15.0796 15.1121
0.1452 0.1454 18.0955 18.1346
0.1452 0.1454 21.1114 21.1570
0.1452 0.1454 24.1273 24.1794

Table 1a: Absolute Difference of Solutions Table 1b: Predicted and Absolute Differences of Solutions

SOCS solves (8a) up to the square root of machine precision. In addition, when the constraint is active, (8b)
is also solved to the square root of machine precision. Theorem 1 gives absolute error bounds. After substituting
εk = δk =

√
εmach into the formulas of Theorem 1, we observe that the differences between the two solutions are

much larger than the estimates allow. For (2) on a grid of size N = 10, Theorem 1 predicted a difference on the
order of 10−5. As seen in Figures 1a and 1b, the two solutions differ by much more than that. The NLP tolerances
were not enough to explain what we are seeing computationally on coarse grids. Closer examination of the solution
obtained from SOCS shows that not all variables x̃k lie directly on the constraint. In fact, x̃1 is consistently above the
constraint for grids larger than N = 5, as illustrated by the |x̃− x| column in the second line of Table 1a.

We again initially set the tolerances at the SOCS defaults

δk =
[ √

εmach√
εmach

]
(17)

However, we set ε1 equal to the distance x̃1 is from the true solution. When N = 10 we have

ε1 = 0.007, εk =
√
εmach, k ≥ 2.(18)

The results of applying Theorem 1 using these new tolerances and N = 10 are given in Table 1b. The small error
created by the constraint chatter in the early stages of SOCS TR propagates down the numerical solution as seen in
(13) to create large differences between IRK and SOCS later in time. In addition, as h gets smaller the distance from
the constraint also gets smaller.

Table 1b suggests that for this test problem the perturbations (17) and (18) account for the ability of SOCS to
find the optimum. As an additional check, rather than simply integrating the DAE (5) using IRK TR, we force the
TR equations to include the addition of ε1 at the first time step. That is, at t1 we have, 0 = Cx1−g(t1)− ε1 as part of
the IRK equations given in (7a)-(7d). This results in the much more accurate approximation of the control in Figure
2a. Note the perturbed IRK TR solution of Figure 2a is now very close to the SOCS TR solution of Figure 1a.
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Figure 2a: TR on the DAE with perturbation Figure 2b: Perturbation Size versus Step Size

The initial constraint chatter shown in Table 1 is present at a wide range of mesh sizes. Figure 2b plots the size of the
constraint chatter (perturbation) versus the step size. The chatter is roughly O(h3). Theorem 2.1 says perturbations
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can be enlarged by 1/(h3). Thus an h3 perturbation is reasonable for inducing an O(1) difference between IRK and
SOCS. Constraint chatter is not unique to problem (2). We have performed a number of numerical experiments on a
variety of index 3 and index 4 problems. In each problem we saw chattering occuring on many levels. When solving an
index 4 problem the constrained solution bounced on and off the curve with greater frequency than the index 3 case.
This behavior also occurs with nonlinear problems. In addition, the chatter seems to occur at both the beginning and
the end of the state constrained interval for boundary value problems. For example, consider the problem

min
∫ 4

0

x2
1 + x2

2 + u2 dt(19a)

x′1 = x3, x′2 = x4, x′3 = x2x1 − u+ 1, x′4 = x1u− x2(19b)
1
2
≥ x2 − x2x1(19c)

State and controls for (19) are given in Figure 3a. Examination of the constraint residual on the interval on
which it is active shows that there is again chatter which goes to zero with mesh size. However, now the chatter is
asymmetrical and changes shape with the mesh. Figure 3b gives an enlarged view of the plot of x2 − x2x1 which is
equal to 1

2 when the constraint is active.

0 1 2 3 4
-60

-50

-40

-30

-20

-10

0

10

t

x 2-x
2x 1

0 1 2 3 4
0

2

4

6

8

10

t

x 2

0 1 2 3 4
-10

-8

-6

-4

-2

0

2

4

t

x 4

0 1 2 3 4
-5

0

5

10

15

20

25

30

t

u

1 1.5 2 2.5
0.48

0.485

0.49

0.495

0.5

0.505

0.51

t

x 2-x
2x 1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.498

0.4985

0.499

0.4995

0.5

0.5005

0.501

0.5015

0.502

t

x 2-x
2x 1

Figure 3a: State and Control Solutions Figure 3b: Chatter along constraint, N=31 and N=61.

4 Conclusions

This paper examines how discretizations in a direct transcription method for optimal control can converge for DAEs
where an application of the mathematically equivalent IRK formulation does not. The two approaches are viewed as
perturbations of each other. A formula for calculating the maximum distance between the two methods was obtained
for linear index three problems. These estimates were verified numerically and gave insight as to why such a large
difference could be observed. A perturbation away from the constraint on the order of O(h3) propagated down the
solution to allow for good approximations to the control. SOCS solves a boundary value problem while the IRK solves
a DAE intial value problem. On a coarse grid SOCS will seek a global solution of the NLP problem no matter what
the discretization error is. The chatter enables the NLP to find a cheaper solution than that provided by the IRK. A
rigorous analysis of when and why SOCS is able to do this is under investigation.
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