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Abstract

There has been considerable research on numerical methods for differential algebraic equa-
tions (DAEs) f(x′, x, t) = 0 where fx′ is identically singular. The index provides one measure
of the singularity of a DAE. Most of the numerical analysis literature on DAEs to date has
dealt with DAEs with indices no larger than three. Even in this case, the systems were often
assumed to have a special structure. Recently a numerical method has been proposed that
can, in principle, be used to integrate general unstructured higher index solvable DAEs. Mod-
ifications of this approach can be used to design constraint preserving integrators for general
nonlinear higher index DAEs. Previous work on these more general approaches has focused on
their feasibility and theoretical basis. This paper examines some of the issues involved with
their computationally efficient implementation.
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1 Introduction

Many physical problems are most easily initially modeled as a nonlinear implicit system of differential
and algebraic equations (DAEs),

f(x′, x, t) = 0[dae] (1)

with fx′ = ∂f/∂x′ identically singular [7]. The index ν, which will be defined shortly, is one
measure of how singular a DAE is. An ordinary differential equation is index zero, and increasing
index implies more complex behavior. Initially most of the numerical work on DAEs assumed that
the DAE was index one. However, many of the problems in constrained mechanics are initially
formulated as index two and three DAEs. DAEs of index up to six naturally occur in mechanics if
actuator dynamics, joint flexibility, and other effects are included [13]. Higher index DAEs (ν ≥ 2)
also occur in several other areas [7,13].

Most of the numerical methods for DAEs require that the systems have special structure, such as
being a mechanical system with holonomic constraints [26], or have indices of only one or two. A more
general approach is introduced in [9]. That approach is explicit and does not preserve constraints.
The first approach for the constraint preserving numerical integration of general unstructured higher
index DAEs is introduced in [18]. An alternative approach could probably be developed based on the
ideas in [30]. The approach of [9,18] is geared toward the integration of moderate sized nonlinear
DAEs with indices of approximately six or less such as typically arise in control and mechanics
problems. This approach should be especially useful in the early stages of design and simulation
when various computer generated models are being used to investigate system behavior. It will also
be useful as a truth model for investigating other integration methods and the validity of various
simplified models. A theoretical analysis of these methods and the establishing of their practicality
is done in [9,12,17,18,19,20]. However little work has been done on how to efficiently implement
these approaches.

This paper will examine several of the issues involved in efficient implementation of these meth-
ods. Section 2 will present a few basic ideas about DAEs. The general numerical approaches are
briefly outlined in Section 3. Section 4 discusses reuse of Jacobians. Section 5 examines a specialized
RQ algorithm.

2 Higher Index DAEs

Suppose that the DAE (1) is a system of n equations in the (2n + 1)-dimensional variable (x′, x, t)
and that fx′ is always singular. We also assume that f is sufficiently differentiable in the variables
(x′, x, t) so that all needed differentiations can be carried out.

Intuitively the DAE (1) is solvable in an open set Ω ⊆ R2n+1 if the graphs (x′(t), x(t), t) of the
solutions x form a smooth 2m+1 dimensional manifold in Ω called the solution manifold and solutions
are uniquely determined by their value x0 at any t0 such that (v0, x0, t0) ∈ Ω. Alternatively, there
is a function Θ(t, λ) such that (Θt(t, λ),Θ(t, λ), t, ) is a diffeomorphism from an (m+1)-dimensional
connected open set into Ω and Θ(t, λ) is a solution for each value of λ. More precise definitions
appear in [12,14,15,30]. Solvable DAEs are also sometimes called regular [31].

In general, the solution x of (1) is known to depend on derivatives of f . If (1) is differentiated k
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times with respect to t, we get the (k + 1)n derivative array equations [12]

Fk(x′, w, x, t) =




f(x′, x, t)
ft(x′, x, t) + fx(x′, x, t)x′ + fx′(x′, x, t)x′′

...
dk

dtk
[f(x′, x, t)]


 = 0[gderiv] (2)

where
w = [x(2), . . . , x(k+1)][wdef] (3)

The index ν of the DAE (1) is often taken to be the least integer k for which (2) uniquely
determines x′ for consistent (x, t). If such a k exists, then x′ is a function of just (x, t) (for consistent
(x, t)) so that

v = g(x, t)[ode] (4)

For general unstructured DAEs, the index is actually a somewhat more subtle concept than this
definition suggests [14]. The index given here is often called the differentiation index and denoted
νd when more than one index is being considered.

3 The General Approach

The widespread occurrence of DAEs has lead to an intensive examination of the numerical solution
of DAE initial value problems. Several numerical methods have been developed. Backward differ-
entiation (BDF) methods have been carefully examined. They are most useful for index one and
some index two problems. Implicit Runge Kutta (IRK) methods have been analyzed for systems in
Hessenberg form. Finally, specialized methods have been developed for certain DAEs with a special
structure such as in constrained mechanics. These methods are discussed in [7,8,23] and some of the
cited literature. Here we briefly summarize a more general approach. We shall assume that the DAE
is a solvable DAE in a moderate number of variables and that formulas are known for the equations
making up the DAE. This requirement can be relaxed to the existence of computer subroutines that
return the values of f given values of x′, x, t.

The matrix C of the equation Cx = b is said to be 1-full with respect to x1 if there is a nonsingular
matrix Θ such that

ΘC =
[

I 0
0 M

]
, x =

[
x1

x2

]
We assume throughout this paper that there is an integer k such that the following assumptions

hold.

(A1) Sufficient smoothness of Fk.

(A2) Consistency of G = Fk = 0 as an algebraic equation.

(A3) Jk = [ Gx′ Gw ] is 1-full with respect to x′ and has constant rank independent of (x′, w, x, t).

(A4) Jk = [ Gx′ Gw Gx ] has full row rank independent of (x′, w, x, t).
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These assumptions permit a robust numerical least squares solution of the derivative array equa-
tions. Let ν be the least value of k for which (A1)–(A4) hold. That is, ν is the uniform differentiation
index νUD [14]. For Hessenberg systems, νd = νUD, but in general νUD is the maximum of νd over
a set of perturbations.

Note that (A1)–(A4) are directly in terms of the original equations and their derivatives and
do not require any sort of coordinate changes. Also (A3) and (A4) hold in a full neighborhood
since {x′, x, w} are considered to be independent variables. Conditions (A1)–(A4) frequently hold in
practice and are numerically verifiable using a combination of symbolic and numeric software [15].
They are almost equivalent to a type of uniform solvability [14].

3.1 Explicit Integration

Suppose that we have a value (x, t) which is close to a consistent value. Holding (x, t) fixed, the
derivative array Fk(v, w, x, t) = 0 becomes a possibly inconsistent system. However, (A3) says that
its Jacobian has constant rank.

Let H(v, w) = Fk(v, w, x, t) for a given (x, t). Given an initial guess (v0, w0), we can solve H = 0
for (v, w) using a Gauss-Newton iteration

[vn+1, wn+1] = [vn, wn]− ρn[Hv(vn, wn), Hw(vn, wn)]†H(vn, wn)[eq22] (5)

where A†b is the minimum norm least squares solution of Az = b [16].
It is shown in [9,12] that, under our assumptions, (5) converges to a limit (v∗, w∗). This limit

satisfies the least squares equation (LSE)

[Hv(v∗, w∗), Hw(v∗, w∗)]TH(v∗, w∗) = 0[eq55] (6)

Note that the LSE is not equivalent to Fk = 0 but has additional nonunique solutions. However, v∗

defined by (6) depends only on (x, t). Thus v∗ = h(x, t) defines a smooth completion [12].

x′ = h(x, t)[eq56] (7)

That is, (6) defines an ODE whose solutions include those of the DAE. This ODE can be integrated
by standard ODE integrators provided h is smooth enough. We shall refer to this procedure as
the explicit approach. It has the additional nice features that the completion is unique as long as
sufficient differentiation is done and the completion is defined on all of I. Neither of these are true
for completions defined by other methods, such as using subsets of the derivative array equations
[11].

A detailed discussion of some of the technical issues with this approach can be found in [9,12,17,20].
The computational effort in carrying out this approach centers on evaluating G, evaluating the Ja-
cobians, and carrying out the linear algebra in the least squares solves.

Because the Jacobians have both column and row nullity we have chosen not to use differencing.
We have investigated two approaches for computing G and the Jacobians.

One is to form the Jacobians symbolically in a language such as MAPLE V and then have
MAPLE convert this symbolic expression to optimized FORTRAN code. Programs can be written
which require only the original DAE with all subsequent work being done automatically [17]. While
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the MAPLE portion of this calculation can be time consuming, it need only be done once for a
given set of equations since MAPLE will pass any parameters to the FORTRAN subroutine. All
subsequent simulations can be done using only the FORTRAN code.

We have also investigated the computation of the Jacobians and G using the automatic differen-
tiation code ADOL-C [20]. This approach is preferable for large problems. Automatic differentiation
also tends to use substantially less memory on larger problems. Even for moderate sized nonlinear
DAEs, the use of automatic differentiation reduces the cost of Jacobian evaluation so much that the
least squares solution is now the dominate cost.

3.2 Implicit Coordinate Partitioning

It is often desirable to preserve constraints. As shown in [17] one cannot just combine the explicit
integrator and the obvious projection to stay on the solution manifold if the problem is unstructured.
An alternative is developed in [18]. There subsets of the state variables are used to set up a local set
of coordinates for the solution manifold. Within this local set of coordinates, an explicit integrator
is used. This is similar in principle to the generalized coordinate partitioning used in mechanics [33].
However, a fundamental difference is that in our setting we do not assume that any of the constraints
are known explicitly. Thus the coordinates must be picked in an implicit manner. Also we do not
assume that the equations have any specific structure such as being Euler-Lagrange equations. A
brief outline of this approach is the following.

Let G = 0 be the derivative array equations (2). As described in [18] we take a partition of the
state variables

x = (x1, x2)[eq400] (8)

so that
J̃ = [Gv Gw Gx1 ][imacs2] (9)

has full row rank. The variables x2 of (8) are used to parameterize the solution manifold locally.
Define the variables z̃, ω by

z̃ = ([x′, w], x1) = (ω, x1)[eq401] (10)

Thus z̃ is everything but x2 and ω is everything but x. Then G
z̃

is not only 1-full with respect to
x′ but it is also full row rank by the choice of x1. Thus

G
z̃
(z̃, x2, t)TG(z̃, x2, t) = 0[eq402] (11)

is equivalent to G(z̃, x2, t) = 0. Unlike with the explicit approach, we may now use any method of
finding z̃ given (x2, t) which minimizes C(z̃) = 1

2G(z̃, x2, t)TG(z̃, x2, t). We have chosen to use a
Gauss-Newton iteration

z̃[m+1] = z̃[m] − ρmG
z̃
(z̃[m], x2, t)†G(z̃[m], x2, t)[eq404] (12)

Suppose then that we have a point (z̃0, x20, t0) where G(z̃0, x20, t0) = 0 and our assumptions
hold. Then by [18] there is a partitioning such that z̃ = (x′, [ξ, η], [x1, x2]) and open neighborhoods
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Ñ ,N such that within these neighborhoods we get that the limit (x′1
∗
, x′2
∗
, w∗, x∗1) of (12) satisfies

the fundamental equations [eq406]

x′1
∗ = f1(x2, t)[eq406a] (13a)

x′2
∗ = f2(x2, t)[eq406b] (13b)

x∗1 = h(x2, t)[eq406c] (13c)

where f1, f2, h are defined by the limit of the iteration.
One step of the integration of the DAE now goes as follows. Given xn−1 = (x1,n−1, x2,n−1)

we apply a multistep integrator to (13a)–(13b) to get x̂n = (x̂1,n, x̂2,n). A final function evaluation
gives x′n = (x′1,n, x

′
2,n) and x1,n = h(x̂2,n, tn). Then the value for xn is taken to be (x1,n, x̂2,n).

Thus xn lies on the solution manifold and satisfies all constraints. The feasibility of this approach
has been developed in [17,27]. This approach will be referred to here as the coordinate partitioning
approach.

4 Reuse of Jacobians

As shown in [17,20] the evaluation of J and G is cheap in comparison with the cost of the linear
algebra. One natural way to speed up the computation is to reuse the Jacobians.

For the coordinate partitioning method, the reuse of the Jacobians in (12) would lead to

z̃[m+1] = z̃[m] − ρmG
z̃
(z̃0, x̂2, t̂)†G(z̃[m], x2, t)[eq4041] (14)

where x̂2 	= x2, t̂ 	= t if the Jacobian is reused for several time steps. Convergence of (14) can be
proved in a straightforward manner. The limit z̃∗ of (14) satisfies

G
z̃
(z̃0, x2, t)TG(z̃∗, x2, t) = 0[eq4042] (15)

Since the matrix in (15) has full column rank we get that

G(z̃∗, x2, t) = 0[eq4043] (16)

and the parts of the solution that are used are the same as if the Jacobian had been updated each
iteration. Thus Jacobians can be reused with the coordinate partitioning approach as long as there
is satisfactory convergence of the iterations (14).

However, the situation is more complex with the explicit approach. Suppose (v0, w0) is close to
(v∗, w∗). The simplest modification of (5) would be

[vi+1, wi+1] = [vi, wi]− [Hv(v0, w0), Hw(v0, w0)]†H(vi, wi)[it-1] (17)

There are two issues concerning (17) that must be examined. One is convergence of the iteration.
The other is the dependence of v∗ on (v0, w0) and possibly (t0, x0) if the Jacobian is reused for
several time steps. A key result is the following theorem from [4]. We let R,N denote the range
and nullspace of a matrix.
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Theorem 1 [ben-thm] Let F be a function, F : En → Em, y0 a vector in En, M a real positive
number, such that:

[cond1]F ∈ C ′(S(y0, δ)), S(y0, δ) = {y : ‖y − y0‖ < δ} (18)

[cond2]M ‖J†(y0)‖ < 1 (19)

[cond3]‖J†(y0)‖ ‖F (y0)‖ < (1−M‖J†(y0)‖) δ (20)

Then the sequence
[seq-1]yi+1 = yi − J†(y0)F (yi) i = 0, 1, 2, · · · (21)

converges to the unique solution of JT (y0)F (y) = 0 which lies in S(y0, δ) ∩ {y0 +R(JT (y0)}, where
R(A) is the range space of A. Moreover,

[y-n]‖yi+1 − yi‖ ≤ ki0(1− k0)δ, where k0 = M‖J†(y0)‖ (22)

We now prove the following local result:

Proposition 1 [p-1] Suppose that for a given (t, x) we have (v0, w0) is sufficiently near the solution
manifold of (2), and (A1)-(A4) hold. Then

(i) The sequence (vi, wi) defined by (17) converges to the solution (v∗, w∗) of

JT (v0, w0)H(v, w) = 0[neweq1] (23)

(ii) (v∗, w∗) is continuous in x and t.

Proof. To simplify notation, let

y = [v, w], R(y) = H(v, w), J(y) = Ry(y).

We shall verify that (18), (19), (20) are satisfied here. Let S(y0, δ) = {y : ‖y−y0‖ < δ}, B(xk, δx) =
{x : ‖x− xk‖ < δx}, and I(tk, δt) = {t : |t− tk| < δt}. Suppose that y ∈ S(y0, δ), x ∈ B(xk, δx),
and t ∈ I(tk, δt). By assumption (A3), we have that in S(y0, δ), B(xk, δx), and I(tk, δt), J† is
continuously differentiable. By continuity of J there is a c1 so that

[J-lips]‖J(y)− J(y0)‖ ≤ c1‖y − y0‖ (24)

Thus by the notation used in [4], we have R(y) ∈ C ′(S(y0, δ)). Also note that on the sets S(y0, δ),
B(xk, δx), and I(tk, δt), we have

‖J†(y)‖ ≤ c2, ‖R(y)‖ ≤ ε (25)

Let M be a real positive number, such that

[Mc-2]Mc2 < 1 (26)
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By taking y0 close to the solution manifold of (2) which is R(y) = 0, we can make ε small enough
to insure that

[J0-r0]‖J†(y0)‖ ‖R(y0)‖ < (1−M‖J†(y0)‖) δ (27)

Then by Theorem 1, yi converges to y∗ ∈ S(y0, δ) ∩ {y0 +R(JT (y0)}, and y∗ satisfies

[lse-1]JT (y0)R(y∗) = 0 (28)

To see (ii), we first define a function by treating x and t as parameters

[g-xt]gx,t(y) = y − J†(y0)R(y) (29)

From [4], for y ∈ S(y0, δ), x ∈ B(xk, δx), t ∈ I(tk, δt), we have

[contract]‖gx,t(y1)− gx,t(y2)‖ ≤M‖J†(y0)‖ ‖y1 − y2‖ ≤Mc2‖y1 − y2‖ (30)

Since Mc2 is independent of x and t, it follows that gx,t(y) is an uniform contraction mapping.
Rewriting (17) as

[seq-gyt]y1 = gx,t(y0), yi+1 = gx,t(yi) (31)

we have (17) converges to y∗ and y∗ is continuous in x and t by the Contraction Mapping Theorem.
✷

With these preliminary results we now turn to examining the reuse of Jacobians.

Lemma 1 [l-1] Let Φ(y) = JT (y0)R(y), J(y) be 1-full with constant rank for all y. Then there
exists δ1 > 0, such that in S(y0, δ1), we have Φy(y) is 1-full with constant rank.

Proof. When y = y0, we have Φy(y0) = JT (y0)J(y0). Then rank(Φy(y0)) = rank(JT (y0)) =
rank(J†(y0)) = p where p is a integer constant, and N (Φy(y0)) = N (J(y0)). Thus Φy(y0) is 1-full.
Since JT (y0)J(y0) has rank p, there exists a nonsingular p×p submatrix M(y0) of JT (y0)J(y0). Let
M(y) be the p×p submatrix of Φy(y) = JT (y0)J(y) obtained by deleting the same rows and columns
of JT (y0)J(y) as done for M(y0). By the continuity of invertability of a matrix, there exists δ1 > 0,
such that the matrix M(y) is invertible in S(y0, δ1). Thus rank(JT (y0)J(y)) ≥ p. On the other
hand, we have rank(JT (y0)J(y)) ≤ rank(JT (y0)) = p. Thus rank(Φy(y)) = rank(JT (y0)J(y)) = p
in S(y0, δ1). The 1-fullness of Φy(y) follows immediately from the 1-fullness of J(y). ✷

Proposition 2 [p-2] If the conditions in Proposition 1 hold for a fixed (v0, w0), then v∗ in (23) is
uniquely determined by (x, t).

Proof. Rewrite equation (28) as

[lse-2]Φ(y) = JT (y0)R(y) = 0 (32)

Then the Jacobian of Φ(y) is
[lse-Ja]Φy(y) = JT (y0)J(y) (33)

By Lemma 1, there exists a set S(y0, δ1), where δ1 is defined as in Proposition 1 such that Φy(y) is
1-full with constant rank in S1.
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Now let δmin = min(δ, δ1), where δ is defined as in Proposition 1. Then we see that the proof in
Proposition 1 is still valid if we use the set S(y0, δmin) instead of S(y0, δ). By the 1-fullness of Φy(y)
in S(y0, δmin),

N (JT (y0)J(y∗)) = N (J(y)) ⊂
{[

v
0

]}⊥
Recall that y = [v, w], the 1-fullness and constant rank of Φy(y) means that [Rv Rw1 ] has full column
rank by permuting w, where w = [w1, w2]. Thus we can solve for v and w1

v = h̃1(w2, x, t)

w1 = h̃2(w2, x, t)

Then we have:

JT (v0, w0)R(h̃1(w2, x, t), h̃2(w2, x, t), w2, x, t) = 0.[lse-in-yt] (34)

Differentiating (34) with respect to w2 yields

JT (v0, w10, w20)(Rvh̃1w2 + Rw1 h̃2w2 + Rw2) = 0.

This is

JT (v0, w10, w20)[Rv Rw1 Rw2 ]


 h̃1w2

h̃2w2

I


 = 0.[lse-diff] (35)

Note that
JT (v0, w10, w20)[Rv Rw1 Rw2 ] = JT (v0, w10, w20)J(v, w1, w2)

is 1-full, (35) implies h̃1w2 = 0 Thus v∗ is uniquely determined. ✷

Note that Proposition 2 is a local result.

4.1 Reuse of Jacobian During One Time Step

The simplest situation is when v∗ does not depend on (v0, w0) since then we get a smooth completion.
We introduce one more assumption

(A5) R([Gx′ Gw]) depends only on t and x.

Assume for this subsection that (A1)-(A5) hold and that we update the Jacobian at every time
step. Then there exists an orthogonal matrix U(x, t) such that

U(x, t)[Gx′ Gw] =
[

K1 K2

0 0

]

where [K1 K2] has full row rank. As showed in [10], we may assume without loss of generality that

[Gx′ Gw] =
[

K1 K2

0 0

]
[U-jac] (36)
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As before, let v = x′. Then we can rewrite the derivative array equations (2) as [dae-range]

G1(v, w1, w2, x, t) (37a)
G = G2(v, w1, w2, x, t) (37b)

G3(x, t) (37c)

where G1 has dim(v) equations. We can permute w so that[
G1v G1w1

G2v G2w1

]
[nons-jac] (38)

is nonsingular. Then the least squares equation [Gv Gw]T (v0, w0)G(v, w) = 0 is


 G1v G1w1 G1w2

G2v G2w1 G2w2

0 0 0



T

(v0,w0)


 G1

G2

G3


 = 0.[lse-range] (39)

By (37) and (38), we get that (39) is equivalent to[
G1

G2

]
= 0[lse-G1G2] (40)

The implicit function theorem and the nonsingularity of (38) imply that (39), or (40), has a solution
[compl-range]

v = φ1(w2, x, t) (41a)
w1 = φ2(w2, x, t) (41b)

with w2, x, t arbitrary in a neighborhood. Then we have [lse-sol]

G1(φ1, φ2, w2, x, t) = 0 (42a)
G2(φ1, φ2, w2, x, t) = 0 (42b)

Differentiating (42) with respect to w2 yields

[diff-lse-sol]

[
G1v G1w1

G2v G2w1

] [
φ1w2

φ2w2

]
+

[
G1w2

G2w2

]
= 0 (43)

The 1-fullness implies that [
G1v G1w1

G2v G2w1

]−1 [
G1w2

G2w2

]
=

[
0
∗

]
(44)

Then we have φ1w2 = 0. Thus v = φ1(x, t) and φ1 is as smooth in (x, t) as desired.
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Theorem 2 [compl-thm] Suppose that (A1)-(A5) hold on a finite t interval. Then the least squares
iteration (17) on the derivative array (2), with updating at every time step of the integrator, produces
a completion

x′ = φ(x, t)[compl-reuse-j] (45)

which is as smooth in (x, t) as G is in (x′, w, x, t). The completion is defined on a neighborhood of
the solution manifold. It is the same as the completion produced by (5).

Proof. Observe that using the same process of producing (40) from (39), we can show that
[Gv Gw]TG(v, w) = 0, is still equivalent to (40). Note that φ is uniquely defined by (40) inde-
pendent of the actual partitions of w used in (42). Then the result follows. ✷

Assumption (A5) holds for index 1 systems, Hessenberg systems of index 2, and some Hessenberg
index 3 systems. Examples show that (A5) is not necessary. Example 1 shows that if (A5) does not
hold, then v∗ can depend on (v0, w0) even if the Jacobian is updated at every time step.

4.2 Reuse of Jacobian for More Than One Time Step

In the previous section, we obtained convergence results for reusing the Jacobian within one time
step. From a computational point of view, we wish to update the Jacobian as rarely as possible.
Proposition 1 actually tells us that it is possible to keep the Jacobian for several time steps and still
have the iteration converge if the time steps of the ODE integrator are small enough. Let the sets
S(x0, δ), B(yk, δy), and I(tk, δt) be the same as before.

Proposition 3 [p-4] Assume that the conditions in Proposition 1 hold at (tk, xk). Suppose that the
step size is chosen such that ti ∈ I(tk, δt), xi ∈ B(xk, δx), the starting value yi0 is close to the solution
manifold of R(y) = 0 at ti, and there exists δi such that S(yi0, δi) ⊂ S(y0, δ) for i = k + 1, · · · , k + l.
Then the same Jacobian can be used for l time steps.

Proof. Let δmin = min(δi, δ1). The proof for Proposition 1 is valid as long as ti ∈ I(tk, δt), xi ∈
B(xk, δx), and S(yi0, δi) ⊂ S(y0, δ) at time ti. ✷

While the iterates may converge with reuse of the Jacobian for several time steps, we will usually
have to deal with dependence on the starting values and possibly also on x0 and t0, the time at
which the Jacobian is evaluated. This is illustrated by the Examples in Section 4.4. The various
possibilities are summarized in the next table.

Dependency of v∗ on Starting Values
Conditions Reuse During One Time Step Reuse for Several Time Steps
(A1)-(A4) v0, w0 v0, w0, x0, t0
(A1)-(A5) none x0, t0

The completions for reusing Jacobians
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4.3 Local error control

In general, if we want to use the same Jacobian in more than one time step, as we have seen in
the previous sections, the completion may depend on the starting values xk0 , tk0 , vk0 , wk0 for some k.
That is,

x′ = h(x, t, xk0 , t
k
0 , v

k
0 , w

k
0 ).[compl-reuse] (46)

If we need to use a new Jacobian for the iteration, then we will have different completions during
the integration. In this section, we will discuss the local error control strategies for the transition
between local completions.

Note that in (46), we use particular values of x, t, v, w as parameters. Rewrite (46) as

x′ = h(x, t, λ), [compl-para] (47)

where λ = {yk0 , tk0 , vk0 , wk0}. Now suppose that we are going to integrate the DAE (1) on the
interval I = [t0 tend]. By compactness, the interval I can be covered by a finite subcover

⋃
α

Iα.

Recall that in the proof of Propositions 1 and 2, given any time tk and xk, on the set

S(x0, δmin) = {x : ‖x− x0‖ < δmin}

B(yk, δyk) = {y : ‖y − yk‖ < δyk}
I(tk, δtk) = {t : |t− tk| < δtk}

the iteration (17) converges. The compactness means that one can pick a finite number of tk such
that

⋃
tk

I(tk, δtk) covers I. Let δI = mintk (δtk), then we have a finite cover
⋃
α

Iα(δI) for I. On

each Iα(δI), along with the corresponding sets S and B, the iteration will converge. We now see
this cover is independent of time tk. In summary, we have the following:

Proposition 4 [p-44] The Jacobian in iteration (17) can be used for at least δI time.

There remains the problem of how to deal with the dependence of v∗ on values of x0, t0, v0, w0.
A careful analysis will be given elsewhere. However, we wish to point out intuitively why the
dependence can be dealt with. For convenience, suppose that we are working on an interval of
length δI and from (46) we have that v∗ = h(x, t, λ). Let x be the solution to the DAE of interest.
Note that x′ = h(x, λ, t) since x and its derivatives satisfy the derivative array equations. If h is the
least squares completion we have that h(x, λ, t) = h(x, t). Then, assuming smoothness of h in λ, x
we get h(x, t, λ) = h(x, t)+O(‖x−x‖). Now suppose that we are performing a numerical integration
on this interval and at time tk we have an estimate xk for x(tk) that is O(hr) accurate and we are
using an rth order integrator. Then the above shows that we will get an rth order estimate for
x′(tk) and hence an rth order estimate for x(tk+1) with a local error of O(hr+1). Thus, in principle,
we can still perform an r order integration.

12



4.4 Examples

To illustrate the results of the previous sections, we discuss two elementary examples.

Example 1 [example1] The DAE[
0 yy′

0 0

] [
x
y

]′
+

[
x
y

]
=

[
f(t)
g(t)

]
[ex1] (48)

is solvable and has the unique solution given by

x = f(t)− g(t)(g′(t))2

y = g(t)

Differentiating (48) twice, we get the derivative array equations

y(y′)2 + x− f = 0
y − g = 0

(y′)3 + 2yy′y′′ + x′ − f ′ = 0
y′ − g′ = 0

5(y′)2y′′ + 2y(y′′)2 + 2yy′y′′′ + x′′ − f ′′ = 0
y′′ − g′′ = 0

The Jacobian

[Gv Gw] =




0 2yy′ 0 0 0 0
0 0 0 0 0 0
1 3(y′)2 + 2y′y′′ 0 2yy′ 0 0
0 1 0 0 0 0
0 10y′y′′ + yy′′′ 1 5(y′)2 + 4yy′′ 0 2yy′

0 0 0 1 0 0




Note that the range of the Jacobian depends on y and y′ so that condition (A5) does not hold. For the
iteration (5), we have the least squares equation [Gv Gw]T G(v, w) = 0. After some simplifications,
the least squares equations are

5(y′)2y′′ + 2y(y′′)2 + 2yy′y′′′ + x′′ − f ′′ = 0[ex1-lse1] (49a)
(y′)3 + 2yy′y′′ + x′ − f ′ = 0[ex1-lse2] (49b)

y′′ − g′′ = 0[ex1-lse3] (49c)
2y2(y′)3 + (2xy − 2yf + 1)y′ − g′ = 0[ex1-lse4] (49d)

Note that (49d) is a third order equation in y′, so there is always at least one real solution. Suppose
we have y′ = φ(x, y, f, g′). Then from the other equations, we get the completion

y′ = φ(x, y, f, g′)[ex1-comp1] (50a)
x′ = f ′ − φ3 − 2yφg′′[ex1-comp2] (50b)

13



Now for the iteration (17), we have the least square equation

[lse-ex1][Gv Gw]T(v0,w0)
G(v, w) = 0 (51)

Or equivalently,

5(y′)2y′′ + 2y(y′′)2 + 2yy′y′′′ + x′′ − f ′′ = 0[ex1-lse11] (52a)
(y′)3 + 2yy′y′′ + x′ − f ′ = 0[ex1-lse12] (52b)

y′′ − g′′ = 0[ex1-lse13] (52c)
2y′0y

2(y′)2 + y′ + (2y′0yx− 2y′0yf − g′) = 0[ex1-lse14] (52d)

In (52b) and (52d), the Jacobian with respect to x′ and y′ is[
1 3(y′)2 + 2yy′′

0 4y2y′0y
′ + 1

]
,

which is nonsingular if the starting values are close to the manifold G = 0. Then we have

y′ = ψ(x, y, f, g′, y′0)[ex1-comp11] (53a)
x′ = f ′ − ψ3 − 2yψg′′[ex1-comp12] (53b)

The example shows that if we reuse the same Jacobian during one time step, the completion can be
dependent on starting values (v0, w0) if (A5) does not hold.

Example 2 [example2] The DAE[
0 y
0 0

] [
x
y

]′
+

[
x
y

]
=

[
f(t)
g(t)

]
[ex2] (54)

is solvable and has the unique solution given by

x = f(t)− g(t)g′(t)
y = g(t)

Differentiating (48) twice, we get the derivative array equations

yy′ + x− f = 0
y − g = 0

(y′)2 + yy′′ + x′ − f ′ = 0
y′ − g′ = 0

3y′y′′ + yy′′′ + x′′ − f ′′ = 0
y′′ − g′′ = 0

14



The Jacobian is

[Gv Gw] =




0 y 0 0 0 0
0 0 0 0 0 0
1 2y′ 0 y 0 0
0 1 0 0 0 0
0 3y′′ 1 3y′ 0 y
0 0 0 1 0 0




Note that the Range space of the Jacobian depends only on y so that (A5) holds. For the iteration
(17), if the Jacobian is reused for several time steps, the least square equation is

[lse-ex4][Gv Gw]T(v0,w0,x0,y0,t0)
G(v, w) = 0 (55)

Or equivalently,

3y′y′′ + yy′′′ + x′′ − f ′′ = 0[ex4-lse41] (56a)
(y′)2 + y′y′′ + x′ − f ′ = 0[ex4-lse42] (56b)

y′′ − g′′ = 0[ex4-lse43] (56c)
y0yy

′ + y0x− y0f + y′ − g′ = 0[ex4-lse44] (56d)

The completion is

y′ =
g′ − xy0 + y0f

1 + y0y
[ex4-comp41] (57a)

x′ = f ′ − (y′)2 − yg′′[ex4-comp42] (57b)

The example shows that if we reuse the same Jacobian during more than one time step, then the
completion can be dependent on starting values (x0, y0, t0) even if (A5) holds.

Example 3 [example3] Take the same DAE as in Example (1).

If we use the same Jacobian for more than one time step, the least square equation becomes

[lse-ex3][Gv Gw]T(v0,w0,x0,y0,t0)
G(v, w) = 0 (58)

Or equivalently,

5(y′)2y′′ + 2y(y′′)2 + 2yy′y′′′ + x′′ − f ′′ = 0[ex3-lse31] (59a)
(y′)3 + 2yy′y′′ + x′ − f ′ = 0[ex3-lse32] (59b)

y′′ − g′′ = 0[ex3-lse33] (59c)
2y0y

′
0y(y′)2 + y′ + (2y0y

′
0x− 2y0y

′
0f − g′) = 0[ex3-lse34] (59d)

In (59b) and (59d), the Jacobian with respect to x′ and y′ is[
1 3(y′)2 + 2yy′′

0 4y0yy
′
0y
′ + 1

]
,
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which is nonsingular if the starting values are close to the manifold G = 0. Then we have

y′ = ψ(x, y, f, g′, y′0, y0)[ex3-comp31] (60a)
x′ = f ′ − ψ3 − 2yψg′′[ex3-comp32] (60b)

Thus if we use the same Jacobian for more than one time step, the completion can be dependent on
starting values (v0, w0, x0, y0, t0).

5 The Linear Algebra

Not only is it desirable to perform the least squares solves less frequently but it is highly desirable
to reduce the cost of performing them. In this section we focus on speeding up the linear algebra in
the coordinate partitioning approach.

Recall that the Jacobian for the coordinate partitioning approach is

J̃ =
[

Gx′ Gw Gx1

]
=




J00 0 0 0 · · · 0 X0

J10 J11 0 0 · · · 0 X1

J20 J21 J22 0 · · · 0 X2

...
...

...
...

. . .
...

...
Jr0 Jr1 Jr2 Jr3 · · · Jrr Xr


 [j-matrix] (61)

where the Jij , 0 are n×n matrices and the Xi are n×m matrices for i, j = 0, 1, 2, ..., r, and 1 ≤ m ≤ n.
Also G = Fr, r ≥ ν.

The least squares solves take the form

J̃z = Fr[im5] (62)

Normally one would consider performing a QR on (62). However, we have that J̃ is full row rank
and it is easier to exploit the structure in (61) by performing orthogonal column operations on J̃

and compute a RQ decomposition. That is, we compute a factorization J̃ = PRQ where Q is an
orthogonal matrix, R is lowertriangular, and P is a permutation matrix. Then the solution of (62)
is

z = (PRQ)†Fr = QTR†PTFr[im6] (63)

We shall see that R has a special structure which simplifies the computation of R† over the QR case.
In general we restrict the use of row permutations so as to not destroy the special block structure
of J̃ in (61). We will ignore P in what follows to simplify notation.

5.1 The RQ decomposition

We perform a special RQ decomposition as follows.
We begin by performing a RQ on the full row rank matrix C which is the first block row of (61).

The Q is applied to all of J̃ . This is done exactly like performing the usual QR algorithm on the
CT . Note that this operation only affects the first and last block column of J̃ in (61). We now have
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


J̃00 0 0 0 · · · 0 0
J̃10 J11 0 0 · · · 0 X̃1

J̃20 J21 J22 0 · · · 0 X̃2

...
...

...
...

. . .
...

...
J̃r0 Jr1 Jr2 Jr3 · · · Jrr X̃r



, [j-matrix2] (64)

where a tilde denotes a new entry and J̃00 is lower triangular. Continuing in this manner we get
that

J̃Q = [U 0][uq], (65)

where U is lower triangular. Thus in (63) we have

R† =
[

U−1

0

]
[im77] (66)

We examine the amount of work saved by this algorithm over performing a QR with no regard to
the structure present. The algorithm given above works equally well when the structure of the DAE
permits reduced differentiation of some of the equations. See [17] for example. However, we will
only consider the fully implicit case here where all n equations are differentiated the same number
of times r and the Xij are n×m. Using a standard QR type implementation of each block row step
of the RQ algorithm we get that the total flop cost for computing the RQ decomposition of J̃ is:

[rqcost]
1
6
(r + 1)(3r + 4)n3 + (r + 1)

(
(r + 1)m +

1
2
r +

3
2

)
n2 + (r + 1)

(
2m +

13
6

)
n (67)

To get at better idea of these estimates we assumed that m = n and computed (67) and the
cost of a QR algorithm for different state dimensions n, and index ν. Table 1 shows how the values
changed for different indices with n = 10.

For a given index the ratio QR/RQ was essentially independent of size as shown by Table 2. Of
course, in practice only n ≥ ν occurs but Table 2 is useful in showing the invariance of the ratio with
respect to n. The tables show that the modified RQ leads to a substantial savings in computation.

5.2 Using RQ to check partitions

One of the key aspects of the coordinate partitioning approach is the monitoring of the partition so
that it can be changed when necessary to avoid ill-conditioning caused by curvature of the solution
manifold. If a standard QR as described in [18,27] is being done on (61), then the partition check is
done with little extra computational effort. Let

QJ̃ =
[

R1 X1

0 X2

]
[im8] (68)

where R1 has full row rank, the Xi are ni×m, and X2 is supposed to be full row rank. The partition
is changed when X2 becomes less well conditioned. That is, when the singular values of X2 become
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Index QR (106) RQ (105) QR
RQ

1 0.010150 0.07177 1.41
2 0.028675 0.15415 1.86
3 0.061500 0.26753 2.30
4 0.112625 0.41192 2.73
5 0.186050 0.58730 3.17
6 0.285775 0.79369 3.60
7 0.415800 1.03107 4.03
8 0.580125 1.29945 4.46
9 0.782750 1.59883 4.90
10 1.027675 1.92922 5.33

Table 1: The number of flops for n = 10.
[tab1]

Sizes(n) QR (105) RQ (105) QR
RQ

3 0.05415 0.01848 2.93
5 0.24025 0.07840 3.06
7 0.64715 0.20720 3.12
9 1.36125 0.43128 3.16
11 2.46895 0.77704 3.18
13 4.05665 1.27088 3.19
15 6.21075 1.93920 3.20

Table 2: The number of flops for index 5
[tab2]

small. Now it is important to monitor the partition regularly. However, frequent use of the QR
would undo the savings of the RQ algorithm. We would like to be able to use the RQ to monitor
the partition and only compute the QR when it becomes necessary to compute a new partition.

If one assumes, as we do here, that R1 remains well conditioned and constant rank, then X2

can have a small singular value only if J̃ has a small singular value. But this means that U in (65)
must have a small singular value. This suggests two ways to monitor the partition based on the RQ
factorization. Here U is a (r + 1)n× (r + 1)n lower triangular matrix.

Method 1: Let U = [uij ], U−1 = [u−ij ], i, j = 1, 2, ..., (r + 1)n, and σ1 ≥ σ2 ≥ · · · ≥ σ(r+1)n be the
singular values of U . A lower bound for the condition number, in the 2-norm is [25]:

[cond-low]K =
σ1

σ(r+1)n
≥ maxij |uij |

mini |uii|
(69)
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(69) tells us that if any of the diagonal elements uii are too small, then we need to choose a
new partition. This check can be done with little extra cost since when we compute the RQ
decomposition, we compute the diagonals first. Since ‖U‖2 ≤

√
(r + 1)n ‖U‖∞, we can also get an

upper bound for K

K = ‖U‖2‖U−1‖2
≤ (r + 1)n‖U‖∞‖U−1‖∞

= (r + 1)n


 max

1≤i≤(r+1)n

(r+1)n∑
j=1

|uij |





 max

1≤i≤(r+1)n

(r+1)n∑
j=1

|u−ij |


 [cond-upper] (70)

Method 2: Apply the condition number estimator [21] to compute the condition number of U .
This estimator requires O((r + 1)2n2) operations.

Since Method 1 is considerably cheaper it will be desirable to use it as much as possible. However,
it is known that Method one can often be a poor estimator of σ min [6]. To examine how accurate
an estimator this is we have taken an index three fully implicit nonlinear DAE with n = 5 from
[18]. This problem has a solution which has some sharp turns in some choices of coordinates at
t = mπ/2.m = 1, 2, 3. Experiments with the Jacobian updating strategies discussed here have been
made but we wish to focus on the problem of partition monitoring. Three times were chosen where
conditioning was a problem. Row pivoting was used during the RQ but only within block rows.
Table 3 gives top and bottom entries in (69), the actual largest and smallest singular values of J̃ , the
condition estimate from (69), the condition estimate dtrco from LINPACK and the actual condition
number of J̃ .

time minuii maxuij σmin σmax Meth. 1. Meth. 2. Cond.
1.57 0.32 1784 0.00101 3643 5565 6.1× 106 3.6× 106

3.14 3.65 1223 0.00711 5515 335 9.3× 105 7.7× 105

4.71 0.96 1200 0.00304 2602 1250 11.6× 106 8.6× 105

Table 3: Condition Estimators
[tab9]

On this example maxij |uij | does a reasonably good job of estimating σmax. This is to be expected
since σmax(U) ≤ (((r + 1)n)3/2 maxij |uij |. But minii |uii| is a much less desirable estimate of σmin.

By our assumptions on f , we have that σmax is bounded of moderate size. It may still be desirable
to monitor maxij |uij | in order to guarantee sufficient accuracy. If σmax gets too small then there
are several consequences. The iteration may require better starting values to converge, convergence
of the iteration may be slowed down, and the solution may be found to lower accuracy.

This suggests the following strategy when doing implicit coordinate partitioning. The Jacobian
is recomputed whenever the iteration slows down or a fixed number of time steps have been taken.
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If a new Jacobian has been computed and convergence is slow or minii |uii| becomes too small we
compute the estimate for the condition number by Method 2. If the estimate shows that the problem
is becoming ill conditioned, then we recompute a new local set of coordinates. If the Jacobian is not
poorly conditioned then the most likely difficulty is a poor initial guess and we reduce the stepsize
of the numerical integrator to get a better prediction for the starting value.

6 Conclusion

Several computational aspects of a class of general integration methods for DAEs have been inves-
tigated. It has been shown that even in the explicit case that Jacobians can be reused for several
time steps although one must then worry about the error control during the transition between local
completions. A specialized RQ algorithm has been developed to speed up the linear algebra in the
least squares solves. Its use in monitoring the partitions with the coordinate projection method has
been discussed.
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