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Abstract

In an active approach for model detection and its use
in failure detection, an auxiliary control is applied
in order to assist in model identification. Recently
an active approach for robust multi-model identifica-
tion and failure detection in the presence of bounded
energy noise over possibly short time intervals has
been introduced. This paper begins the examination
of the extension of the original design procedure to
problems with several delays. The original infinite
dimensional delay problem will be approximated by
a finite dimensional non-delayed system. A num-
ber of approximation schemes for systems with de-
lays have been developed in the literature, however,
their use in this setting is new. In this paper we shall
present computational tests comparing two different
approximation approaches. One is based on a dis-
cretization and the other on a spline approximation
approach.

1 Introduction

Model detection and its use in failure detection can
be done by an active or a passive approach. In a
passive approach various outputs are monitored. In
an active approach an auxiliary control is applied in
order to assist in model identification. Sometimes
failure detection is impossible without the use of an

auxiliary signal. An example involving delays can
be found in [5].

Recently an approach for robust multi-model iden-
tification and failure detection in the presence of
bounded energy noise over possibly short time in-
tervals has been introduced. This active approach
[3, 4, 9, 10] has been developed for systems without
delays. Since many practical systems have delays it
is important to be able to carry out this type of de-
sign for systems with delays. A key part of this pro-
cedure is the formulation and solution of a nonstan-
dard optimization problem. In the very special case
when there is a single constant delay, and the detec-
tion horizon is an integer multiple of this delay, the
previous procedure can be extended to the delay case
using the well known method of steps. This, along
with some related computational issues is discussed
in [5]. While useful for special problems and also as
a truth model for more sophisticated algorithms, the
approach of [5] cannot be applied to many problems.

This paper begins the examination of the extension
of the original design procedure to problems with
several delays. The inclusion of general variable de-
lays or multiple delays in the models being identi-
fied results in a problem which is intrinsically infi-
nite dimensional and requires additional theoretical
and numerical results. We are interested in the case
where there are multiple delays and the number of
delays and their values can vary from one model to
another.



The approach we will follow will be to approxi-
mate the infinite dimensional delay problem with a
finite dimensional non-delayed system. A number
of approximation schemes for delayed systems have
been developed in the literature. However, their use
in our setting is new. In particular it is not clear
which approximations will work best since several
new issues are involved including how the structure
of the approximation interacts with the numerical ef-
ficiency of the optimization algorithm and the re-
quirement for software which must be able to han-
dle high dimensional problems. In our case we use a
direct transcription code called SOCS (Sparse Opti-
mal Control Software) [1, 2], however, other indus-
trial scale optimization packages could be used. The
approximation problem we consider here is different
from that of many approximation problems in that
what is of primary importance is not the accuracy
of the state but the suitability of the auxiliary signal
that is being designed. What is desired are coarse
problem approximations, so that the problem size is
smaller, but which are fine enough to enable one to
get a sufficiently good auxiliary signal.

2 Procedure without delays

Space prohibits a full discussion of the auxiliary sig-
nal design procedure. This can be found in [4].
Our emphasis in this paper is on issues specific to
the solution of delay systems. However, this re-
quires a quick summary of the procedure without de-
lays. This procedure can be applied to problems with
more than two models and to a number of variations
but we focus on the simplest case in this paper.

The true system model is supposed to be one of the
following two linear models defined on [0, ω]:

x′
i = Aixi + Biv + Miνi (1a)

y = Cixi + Niνi (1b)

for i = 1 and 2. Here v is the auxiliary signal,
y is the output and the νi’s represent perturbations,
noises and unmeasured inputs. Ai, Bi, Ci, Mi, Ni

are matrices, which can be time varying, of appropri-
ate dimensions. The states xi of the two models need
not have the same dimensions. The same is true for
the νi. It is assumed that v, νi are in L2[0, ω] = L2.

Then xi, y will also be in L2. To avoid confusion
we let |z| denote the usual Euclidian norm of a vec-
tor and ‖z‖ denote the L2 norm of a vector function.
We assume that Ci and Ni have full row rank.

The noise in model i is measured by

Si(xi(0), νi) = xi(0)T Qixi(0) +
∫ ω

0
|νi(t)|2dt (2)

where Qi is positive semidefinite. Note that if Qi =
0, it means that there is no prior information on xi.
It is assumed that the noise is bounded so that

Si(xi(0), νi) < 1 for i = 1, 2. (3)

The auxiliary signal v is not proper if there exist x0,
x1, ν0, ν1, and y satisfying (1a), (1b) and (3) both for
i = 1 and i = 2. The auxiliary signal v is called
proper otherwise.

If Ai(v) is the set of outputs for model i with noise
satisfying (3), then properness can also be expressed
as A1(v) ∩ A2(v) = ∅.

We want to compute a minimal norm proper test
function. This is

min ‖v‖
such that

max{S1(x1(0), ν1),S2(x2(0), ν2)} ≥ 1 (4)

subject to (1).

To convert this min-max problem to one that is more
computationally tractable we proceed as follows.
The function

Jv(β) = inf
xi, νi, y

subject to (1a)-(1b)

βS1(x1(0), ν1)+(1−β)S2(x2(0), ν2)

(5)
for 0 ≤ β ≤ 1 is the auxiliary cost function associ-
ated with problem (1a)-(1b). It can be shown that an
auxiliary signal v is proper if and only if Jv(β) ≥ 1
for some 0 < β < 1. Thus (4) can be replaced by

Jv(β) ≥ 1. (6)

Then [4] proceeds by setting up the optimization
problem of minimizing ‖v‖ but replaces (6) by the
necessary conditions for the problem that defines
Jv(β). Later when we refer to “the necessary con-
ditions” we mean these necessary conditions.



3 Basic Problem

In this paper we consider the same problem as in
Section 2 except that we allow for delays. We as-
sume that we have m possible models of the form

x′
i(t) = Aixi(t) +

ri∑
j=1

Gijxi(t − τi,j)

+Biv(t) + Miνi(t) (7a)

y(t) = Cixi(t) + Niνi(t) (7b)

xi(t) = φi(t), −hi ≤ t < 0, xi(0) = xi,0 (7c)

for i = 1, . . . , m where v is an auxiliary signal to
be determined, y is the observed output, and hi =
τi,r > τi,r−1 > · · · τi,1 > 0. Let h = maxi hi.
Note that v, y are independent of i and are consid-
ered known since v will be precomputed and y is
measured online during the detection test. The de-
lays and coefficients may vary from model to model.
For simplicity of discussion we shall take the coef-
ficient matrices as constants. However, the discus-
sion goes through with only the obvious changes if
the coefficients are continuous functions of t. We
assume to not know φi and thus it is a type of dis-
turbance or noise as are the νi. Finally we suppose
that the Ni are full row rank and that the detection
horizon is [0, ω] with ω > h. This assumption on Ni

is not restrictive since it means we are handling the
worse case when all output channels are noisy.

Notice in the system (7), as is typical with delay sys-
tems, there are two initial conditions xi,0 and φi and
they are considered to be independent.

Detection is to be carried out over a finite interval
[0, ω]. We suppose that the disturbances φi, νi, xi(0)
satisfy

Si(φi, νi, xi,0) =

∫ 0

−hi

‖φi‖2dt+xi(0)T Qixi(0)+
∫ ω

0
‖νi‖2dt ≤ 1 (8)

where Q is positive semi-definite. No weight is nec-
essary on the second integral since such a weight can
be accommodated by redefining the Ni, Mi.

Let Ai(v) be the set of outputs y for (7) given
(8) holds. Then an auxiliary signal v is proper
if it leads to disjoint output sets Ai(v). That is,
Ai(v) ∩ Aj(v) = ∅ if i �= j.

The first step is to calculate a minimal energy proper
auxiliary signal. Once this auxiliary signal is deter-
mined one needs a test to determine which model
is correct. This is done by using separating hyper-
planes in [3, 4, 9]. As in these earlier papers we
are interested in the possibility of rapid detection so
that the time intervals are finite and allowed to be
“small.” Also the computation of v and the functions
needed in the hyperplane test may be computed of-
fline. Only the application of the hyperplane test
needs to be done online.

While more than two models are easily handled if the
approach of [4] is used, we will usually work with
just two models to simplify the notation and discus-
sion.

The auxiliary signal v is proper if getting the same
output from both models would require too much
noise. That is, if (7) holds for i = 1, 2, then (8)
is violated for at least one of i = 1, 2. Thus find-
ing the minimum proper v is a constrained min-max
problem with the max over (8) which is a max over a
discrete set. Using theory this can be reformulated as
a max-min over continuous variables. As mentioned
earlier, in the approach of [4] which we extend in
this paper, the inner min is replaced by its necessary
conditions to create a new optimization problem for
v. These necessary conditions turn out to have im-
plications for our approximations as will be shown
later.

3.1 Needed Theory

Let Lg be the solution of the delay equation

x′
i(t) = Aixi(t) +

ri∑
j=1

Gijxi(t − τi,j) + g(t)(9a)

xi(t) = 0, for − hi ≤ t ≤ 0. (9b)

Let Γφ be the solution of

x′
i(t) = Aixi(t) +

ri∑
j=1

Gijxi(t − τi,j) (10a)

xi(t) = φ(t), for − hi ≤ t < 0. (10b)

Finally let Θ be the solution of

x′
i(t) = Aixi(t) +

ri∑
j=1

Gijxi(t − τi,j) (11a)



xi(t) = 0, for − hi ≤ t < 0, xi(0) = I. (11b)

Then the output in (7) can be written as

y = CiLiBiv + CiLiMiνi

+CiΓiφi + Θixi,0 + Niνi. (12)

The various operators are all bounded linear opera-
tors from different L2 spaces into the same L2. Thus
Ai(v) is a convex set in L2 translated by the vector
CiLiBiv. We have that the set of φi, νi satisfying
(8) are L2 bounded. If Qi > 0, then the convex set
Ai(v) is bounded. If some or all Qi are indefinite,
then Θixi,0 is a finite dimensional subspace. Thus
we have that

Lemma 1 Suppose that Qi > 0 for i = 1, . . . , m.
Then cv is proper for sufficiently large scalars c if
and only if CiLiBiv �= CjLjBjv for i �= j.

Proof Notice that CiLiBiv �= CjLjBj is all that is
required for a multiple of v to be proper for a com-
parison of model i to model j. But if v is proper,
then any larger multiple is also proper.

There is a variation on this problem. In our fail-
ure detection application we can have the situation
where the process is running and the test will be per-
formed during operation. In this scenario while we
do not know what φi, xi,0 are, we do know that the
state is continuous. In this case we may assume that

φi(0) = xi,0. (13)

We will not discuss this here other than pointing out
that more is involved than just (13). The condition
(13) holds only if some type of continuity is present.
One way to do this would be to assume that φ is
the output of some noise driven exogenous process.
That will be discussed elsewhere.

4 Approximation by systems without
delays

The method of steps used in [5] does not work well,
or at all, if there are multiple delays. It also leads
to very high dimensional problems if h is small rel-
ative to ω. We wish to consider the problems where

there are not only multiple delays but a change in de-
lay itself could be a source of failure. Suppose then
that we have one of the models of the form (7). We
shall temporarily suppress the subscript i to simplify
the notation and describe the approximation process
for one model. We can rewrite (7) as follows. Let
U(t, s) = x(t + s) for 0 ≤ t ≤ ω,−h ≤ s ≤ 0.
Thus for a fixed t, U(t, s) is a function in L2 which
is x on the interval [t − h, t]. To guarantee that U
is the function we want we require U to satisfy the
following well known partial differential equation

Ut(t, s) = Us(t, s) (14a)

Ut(t, 0) = AU(t, 0) +
r∑

j=1

GjU(t,−τj)

+Bv(t) + Mν(t) (14b)

U(0, s) = φ(s) − h ≤ s < 0 (14c)

U(0, 0) = x0 (14d)

y(t) = CU(t, 0) + Nν(t) (14e)

There are a number of ways to approximate PDEs by
ODEs. When applied to (14) we get an ODE model
identification problem similar to that described in
Section 2. However, there are a number of techni-
cal problems to be resolved in our setting includ-
ing which methods work, the accuracy of approx-
imation, and the relationship between optimization
of the approximation and the original problem and
how to guarantee detection of the original problem
when using approximate problems to compute the
test signal. We now turn to considering two types of
approximations.

Different methods of approximation can lead to dif-
ferent models. Thus it is desirable to use the same
approximation procedure in all models. Otherwise
there is the danger that the test signal will be de-
signed to detect differences due to the approxima-
tion methods rather than differences in the original
models.

4.1 Use of differences

One method of approximating the PDE is the use of
differences and the method of lines. This approach
proceeds as follows. We temporarily suppress the i
subscript in (14). We pick a mesh for [−h, 0] of the



form
−h = s0 < s1 < · · · sρ = 0.

The one restriction on this mesh is that each −τj has
to be a mesh point smj

. We suppose then that −τj =
smj

. The value of h and the delays may vary from
model to model. Let

Uk(t) = U(t, sk).

Then we get the following ordinary differential
equation system

U ′
0(t) =

2∑
h=0

α0,hUh(t) (15a)

U ′
k(t) =

1∑
h=−1

αk,hUk+h(t), 0 ≤ k < ρ− 1(15b)

U ′
ρ(t) = AUρ(t) +

r∑
j=1

GjUmj
(t)

+Bv(t) + Mν(t) (15c)

Uk(0) = φ(sk), k < ρ (15d)

Uρ(0) = x0 (15e)

where (15b) and (15a) come from (14a) while (15c)
comes from (14b). If we have 0 < k < ρ and let
δ = sk+1 − sk, ε = sk − sk−1, then we can take

αk,1 =
ε

δ(ε + δ)
, αk,−1 = − δ

ε(ε + δ)
, (16)

αk,0 =
ε

δ(ε + δ)
− δ

ε(ε + δ)
. (17)

This provides an approximation for the spatial
derivative which is O(δε). To get a similar ac-
curacy for the U0 equation we need to use a one
sided approximation using two extra values. Let
δ = s1 − s0, ε = s2 − s1. We can then take

α0,0 = −α0,2 − α0,1, α0,1 =
δ + ε

δε
, (18)

α0,2 = − δ

ε(δ + ε)
. (19)

Two things should be noticed. First we have that

ak,1 ≤
1

δ
, ak,−1 ≤

1

ε

so that the coefficients only grow as one over the
mesh size. Secondly if ε = δ, then (17) simplifies
to

ak,1 =
1

2δ
, ak,0 = 0, ak,−1 = − 1

2δ
.

This procedure has transformed the delay model
equation to an approximate ordinary differential
equation model. We also must transform the first
term in the noise measure (8). Let Ui,j be the j vec-
tor in the approximation for model i. Let γi,j be the
collocation coefficients for approximating integrals
on [−hi, 0] using the grid points si,j . Then (8) be-
comes

S̃i(φi, νi, xi,0) =

ρi−1∑
j=0

γi,j‖Ui,j(0)‖2 + γi,ρi
‖φi(sρi

)‖2 +

+Ui,ρi
(0)T QiUi,ρi

(0) +
∫ ω

0
‖νi‖2dt ≤ 1. (20)

Note that (20) is of the same type of noise measure
studied previously for the undelayed problem. How-
ever, there is one important difference. In the opti-
mization approach we use here, which is based on
[4], a max min problem is solved by replacing the
min by the necessary conditions for the min along
with a quantity that returned the value of the min.
In the non-delayed case this was a boundary value
problem. However, in general, if in the cost, which
is based on the noise bounds for the two models,
there are terms that do not appear in any of the dy-
namic equations or constraints, then these necessary
conditions have the additional requirement that these
terms are zero.

For our problem here note that φi(0) appears only in
the noise bound (20) and nowhere in the dynamics
or initial conditions in (15). Accordingly, we have
an additional necessary condition that

φi(0) = 0 (21)

so that instead of (20) we get

S̃i(φi, νi, xi,0) =



ρi−1∑
j=0

γi,j‖Ui,j(0)‖2

+Ui,ρi
(0)T QiUi,ρi

(0) +
∫ ω

0
‖νi‖2dt. (22)

It is easy to see that if the condition (21) is not added
then there is an incorrect solution of the optimization
problem which has v = 0 and, in fact, we have seen
this solution occur in computational tests which did
not assume (21).

We shall use collocation schemes for which all the
γi,j > 0. For example if we are using a Trapezoidal
approximation, then we have (suppressing the i sub-
script on all terms)

γ0 =
s1 − s0

2
, γρ =

sρ − sρ−1

2
,

γj =
sj+1 − sj−1

2
if j �∈ {0, ρ}. (23)

Figure 1 from [6] shows the minimum energy test
signal for a typical problem as the Qi varies.
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Figure 1: Minimum proper v on [0, 1] for 0 ≤ Qi ≤
1.

The important thing to notice is that Qi had to be
quite small before the v started to look like the Q =
0 case. Note that the quadrature always puts a weight
on φi(0).

4.2 Spline approximation

An alternative approach to replacing the delay sys-
tem with an ODE approximation is by approximat-
ing the various operators and functions from finite
dimensional subspaces. The approach we consider
is from [7, 8]. We follow here the notation and ap-
proach of [7]. We shall leave out much of the tech-
nical detail. It should be noted that this approach
allows us to consider more complex models than
(7a). In particular, one can include terms such as∫ 0
−hi

Fi(θ)xi(t + θ)dθ.

Pick N to be the partition size. Let tNk be a partition
of [−h, 0], k = 0, . . . , N . Both ends are doubled
by adding tN−1, t

N
N+1. k = 0 starts at the right end

of [−h, 0]. Let BN
k (θ) be the usual “hat” function.

Note that except for k = 0, N , the area is one and for
k = 0, N , the area is 1

2
. Thus if g(t) is a function on

[−h, 0], we have that
∑N

j=0 g(tNk )BN
k (t) is a piece-

wise linear interpolation of g(t) at the grid points.
It is assumed that every delay of the original system
falls into at most one of the subintervals. Note that,
unlike with differences, the grid points do not have
to hit the delay so we can use a uniform grid.

If initial data is Rn × L2, and u ∈ L2,
then solutions of (7a) are in L2(−h, T ; Rn) ∩
H1(0, T ; Rn). We take dom(A) = {(η, φ) ∈ Z|φ ∈
H1(−h, 0; Rn), η = φ(0)} and A(φ) =

∑
Aiφ(θi).

H1 is given the norm and inner product

< φ, ψ >H1=< φ(0), ψ(0) >Rn + < φ′, ψ′ >L2 .

We define Ψ an isomorphism between dom(A) and
H1 by Ψ(φ(0), φ) = φ. Then Ψ−1(φ) = (φ(0), φ).
Other notation includes: EN

k = ℵ[tN
k

,tN
k−1

), k =

1, . . . , N for the characteristic function of a subin-
terval; ÊN

0 = (In, 0) for Rn; ÊN
k = (0, In) for

the past; WN = span{EN
k In : 1 ≤ k ≤ N}

for the approximation subspace of L2[−r, 0]; Zn =
Rn × WN = span{EN

k In : 0 ≤ k ≤ N} for the
approximation subspace of Z; XN = span{BN

k In :
0 ≤ k ≤ N} for the approximation subspace of H1;
and ZN

1 = Ψ−1XN for the approximation subspace
of dom(A). In addition we have the basis matrices
EN = (EN

1 I · · ·EN
N I), ÊN = (ÊN

0 · · · ÊN
N ), and

B̂N = (BN
0 I · · ·BN

N I).

Then z = (η, φ) ∈ ZN can be written (η, ENaN) =



ÊNcol(η, aN) where aN is a coordinate vector of
φ ∈ WN with respect to the basis. Similarly if
φ ∈ XN , then φ = BNbN , bN = col(bN

0 , . . . , bN
N).

Let

QN =




1 0 · · · · · · 0
1
2

1
2

. . . · ...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1

2
1
2



⊗ In (24)

where the first matrix is (N + 1) × (N + 1). For
k = 0, . . . , N , let

DN
k = L(BN

k ) =
c∑

j=0

AjB
N
k (θj). (25)

Also let

HN =

[
DN

0 · · · DN
N

0 · · · 0

]

+
N

r




0 · · · · · · · · · 0
1 −1 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
o · · · 0 1 −1



⊗ In (26)

where the first matrix in the tensor product is (N +
1) × (N + 1) and the first matrix after the equality
has lots of zero rows. Then

(QN)−1 =




1 0 · · · · · · 0

−1 2
. . . · ...

1 −2 2
. . .

...
...

. . . . . . . . . 0
(−1)N+1 · · · 2 −2 2



⊗ In.

(27)

BN is a block column matrix whose only nonzero
entry is the first one as is MN . CN is a block row ma-
trix whose only nonzero entry is the first one which
is C as is NN .

Let
AN = HN(QN)−1 (28)

The differential equation is then

(aN)′(t) = ANaN(t) + BNv(t) + MNη(t) (29)

y(t) = CNaN(t) + NNη(t) (30)

5 Computational examples

In this section we shall work several computational
examples. We consider two models of the form

x′
i(t) = Aixi(t) + Gixi(t − h) + Biv + Miνi,1 (31a)

y = Cixi(t) + Niνi,2 (31b)

5.1 Computational Example 1

Our first example (32) will be used to illustrate a
number of points. It is chosen since it is possible to
reformulate this problem using the method of steps
[5] and obtain the exact solution for comparison pur-
poses.

x′
1 = −2x1 + x1(t − 1) + v + ν1 (32a)

y = x1 + ν2 (32b)

x′
2 = −3x2 + x2(t − 1) + v + ν3 (32c)

y = x2 + ν4 (32d)

We have solved this problem using steps, differ-
ences, and a spline approximation for a number
of different choices of initial conditions and noise
weightings. We suppose that detection is being done
over [0, 2]. The two models differ in the decay rate.

Figure 2 shows the “true” minimal energy auxiliary
signal v computed using steps and the auxiliary sig-
nals vρ gotten using differences with several values
of ρ.

Observe that the approximation appears better for in-
creasing ρ although on this problem the coarsest ap-
proximation using ρ = 4 already did quite well. The
first column of Table 1 gives the norm of the test sig-
nal.

The question arises as to how good the minimal en-
ergy auxiliary signal from the approximation is. To
examine this we took vρ and found the minimum
value of cρ such that cρvρ was proper in the origi-
nal system. This computation showed that for this
example, not only were the vρ proper for the true
problem but that cρvρ was close to minimal. Table 1
shows the norms of v, vρ and cρvρ, for several values
of ρ.
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Figure 2: Minimal energy auxiliary signal v, and dif-
ference approximations v4, v6, v11, v15, v20 for Ex-
ample 1.

‖vi‖ ci ‖civi‖
v4 15.3796 0.9953 15.3071
v6 15.3796 0.98699 15.3012
v11 15.4598 0.98943 15.2965
v15 15.4506
v20 15.4506
v 15.2934 1 15.2934

Table 1: ‖v‖, ‖vi‖, ci for Example 1 using differ-
ences with ρ = 4, 6, 11, 15, 20.

We have also solved this problem using the spline
approximations described earlier. The results are
shown in Figure 3.

It is interesting to note that as ρ and N are increased
the difference and spline approximations for v seem
to converge to the same function. In fact, by ρ =
N = 20 they are almost identical as shown in Figure
4.

The spline and difference approximation minimum
energy auxiliary signals are differing slightly from
those of the steps solution. However, the norm of
the spline approximation is very close to that of the
step solution as seen in Table 2.

We see that both the splines and differences do an ex-
cellent job of approximating and give us high quality
auxiliary signals using low values of N and ρ. The
source of the remaining difference between the ap-
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Figure 3: Auxiliary signals for Example 1 using
splines for several N .
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Figure 4: Differences and splines on Example 1 with
N = ρ = 20 and the steps v.

proximate v and the steps v is not clear at this time.
Notice that the difference in norms is quite small and
the relative error shown in Table 2 is around 10−5.
This suggests that the difference is due to the fact
that the answers from all three approaches are es-
sentially equal in terms of the optimization problem
and the remaining difference is due to how they ap-
proach the minimum. This is the most likely expla-
nation. However, we will continue to examine this
point. Graphically the spline and difference approx-
imations appear to be equally good. The tables show
that the spline approximations give a slightly better
estimate of ‖v‖.



‖vN‖ Rel. Error
N=3 15.49152 0.0129546
N=4 15.40969 0.0076039
N=5 15.37202 0.0051408
N=20 15.301224 0.0005113

v 15.2934 0

Table 2: Norm of spline approximation solutions for
v for Example 1.

5.2 Computational Example 2

The next example illustrates a computational sub-
tlety. Suppose that the two models are

x′
1 = −2x + x(t − 1) + v + νi (33a)

y = x + ν2 (33b)

x′ = −2x + x(t − 0.4) + v + ν3 (33c)

y = x + ν4 (33d)

so that the failure consists of a change in the delay
interval. Suppose that we decide for convenience to
use a delay interval of [−1, 0] for both models. When
we solve the problem for ρ = 5 or N = 5 we get the
auxiliary signal in Figure 5.
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Figure 5: Minimal energy test signal for Example 2
using splines and differences with h1 = h2 = 1 and
N = ρ = 5.

However, if we take ρ ≥ 11 we begin to experience
numerical difficulties. To understand what is hap-
pening we note that the approximate problem is a
reasonable finite dimensional model. However, in
the continuous problem the initial perturbation for

model 2 on [−1,−0.4] appears in the noise measure.
Thus the correct formulation of the optimization ver-
sion of our approach would require the initial per-
turbation to be zero on this interval. The failure to
take this difference into account leads to a numerical
breakdown as the width of the mesh used to partition
the delay interval goes to zero. Thus, like with our
handling of φ(0), one must keep the theoretical ap-
proach in mind and make sure that all the necessary
conditions are included in the formulation.

5.3 Computational Example 3

For our final computational example we suppose that
two delays are present and that the two models are

x′
1 = −2x1 + x(t − 1) + v + ν1 (34a)

y = x1 + ν2 (34b)

x′
2 = −2x2 + 0.5x2(t − 1)

+0.5x2(t − 0.4) + v + ν3 (34c)

y = x2 + ν4 (34d)

Here the failure consists of an additional shorter de-
lay of the state. This type of change can occur if
the delay in a feedback loop is altered, for example
by failure of the hardware or software implementing
the feedback. The minimum energy auxiliary sig-
nal found using difference approximations is given
in Figure 6.
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Figure 6: v6 and v11 for Example 3.

The spline solution of Example 3 is almost identical
as seen in Figure 7. It is interesting to note the differ-
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Figure 7: Spline and difference approximations with
N = ρ = 5 on Example 3.

ence in shape between the auxiliary signals in Figure
6 and the auxiliary signals in Figure 2. In Example 3
where part of the difference in the two models is due
to the additional delay of 0.4 we see that v acts most
strongly in the interval [0.4, 0.6].

6 Conclusion

This paper has shown how an auxiliary signal design
approach for non-delay systems can be extended to
delay systems by using finite dimensional approxi-
mations. This extension required modification of the
noise measure in the approximation in order to get
the correct solution of the finite dimensional prob-
lem. Computational examples suggest that high ac-
curacy is not needed in the approximate system in
order to get near optimal test signals. Further work
is under way to examine what happens on more com-
plex problems and to provide the needed analysis
and error estimations for the proposed approach.
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