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Abstract A discrete-time descriptor linear quadratic (LQ) optimization problem is considered. This problem can be con-
sidered as a generalization of many standard LQ problems including Kalman filters. A complete recursive solution based on a
novel Riccati equation is presented. The limiting case when the size of the interval goes to infinity is studied.

1 INTRODUCTION

In this paper, we study a generalized linear least squares
fit problem. The type of problem we consider here
comes up often in the stochastic framework where the
Kalman filtering, identification, or the likelihood com-
putations can be formulated as LQ optimization prob-
lems [11, 12]. These LQ optimization problems don’t
have the standard structure encountered in control prob-
lems in that the associated dynamics equation is in de-
scriptor form and rectangular. The reason is that the dy-
namics is obtained by putting together the dynamics of
the original system, which may or may not be in de-
scriptor form, and the observation equations. Of course,
the original dynamics may also be in descriptor form
[7, 6, 8, 10, 2, 4].

We use the method of dynamic programming (see for
example [1]) to construct a recursive solution which
turns out to be based on a generalized Riccati equation.
We study the asymptotic properties of this equation and
propose a method for the construction of its solution.

2 PROBLEM FORMULATION

We consider the problem

(2.1)

subject to

(2.2)

where is a known given sequence of vectors. , ,
and are matrices with appropriate dimensions.

We assume

has full column rank (2.3)

has full row rank (2.4)

Condition (2.3) is necessary for the uniqueness of the
solution. If this condition is not satisfied, we can re-
move the part of which is arbitrary (the “unobservable
subspace”). If condition (2.3) is satisfied and ,
where is the size of the vector , then there is at
most one solution to the problem.

Condition (2.4) guarantees the existence of solution for
all .

3 METHOD OF DYNAMIC PROGRAMMING

To construct the solution of problem (2.1) subject to
constraints (2.2), we use the method of dynamic pro-
gramming. Let denote the past cost function:

(3.5)

subject to

(3.6)

Note that depends on given constants but for sim-
plicity of the notations, we do not explicitly express this
dependence. Clearly,

(3.7)

The ’s can be constructed recursively as follows:
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Lemma 3.1

(3.8)

where

(3.9)

(3.10)

The proof is obtained by straightforward application
of the method of dynamic programming.

Theorem 3.1 The cost function is given by

(3.11)

where the ’s and ’s are respectively defined
in (3.9) and (3.10), and where

(3.12)

Proof To compute , we can use (3.7) and (3.8)
for . It is straightforward to show that any
satisfying

(3.13)

is an optimal solution of (3.7). Equation (3.11) is then
obtained by placing

(3.14)

in (3.8) for .

4 ASYMPTOTIC BEHAVIOR

4.1 The Algebraic Riccati Equation

To study the asymptotic behavior of the solution as
goes to infinity, let

(4.15)

Then, clearly

(4.16)

(4.17)

Theorem 4.1 converges exponentially fast to the
unique positive definite solution of the algebraic de-
scriptor Riccati equation

(4.18)

Proof The proof has four parts. First we show that
is increasing. Then we show that it is upper-

bounded. This proves that converges. Then we
show that the limit is positive definite. And finally
we show that is the unique solution of the algebraic
descriptor Riccati equation (4.18).

Lemma 4.1 The sequence of ’s satisfies

(4.19)

Proof First consider the optimization problem

(4.20)

subject to . Clearly,

(4.21)

The solution to the optimization problem (4.20) is

(4.22)

Thus by letting and , we get

(4.23)

but so is increasing and positive
semi-definite.

Lemma 4.2 There exist a positive semi-definite matrix
such that

(4.24)



Proof From (2.4), it is easy to see that there exists an
invertible matrix

(4.25)

such that

(4.26)

where is a right inverse of .
Clearly has full row rank,

, which implies that , and consequently
is a stabilizable pair. Thus there exists

a matrix such that is stable (has
all of its eigenvalues inside the unit circle). Let

(4.27)

Then

(4.28)

and has all of its eigenvalues inside the unit circle.

Now consider the following cost function

(4.29)

subject to

(4.30)

(4.31)

where we let

(4.32)

This choice of yields

(4.33)

but the nonzero eigenvalues of are identical to
those of (which are inside the unit circle), thus re-
cursion (4.33) is stable and converges exponen-
tially to zero. Then also converges to zero thanks
to (4.32). This implies that converges as goes
to infinity, for all , which implies that there exists a
positive semi-definite matrix such that

(4.34)

Now consider the same cost function but instead of the
particular choice of used above, take the that mini-
mizes the cost, i.e.,

(4.35)

subject to (4.30). This problem is of course the same as
problem (3.5) with . The solution is

(4.36)

Since the optimal solution is necessarily smaller than or
equal to any particular solution, and thanks to the fact
that the sequence is increasing, we have that

(4.37)

which implies (4.24) where

(4.38)

So for we have shown that is increasing and
bounded, which implies that it converges to some .
Now we show that is positive definite. Suppose it is
not and let be a matrix such that its columns form a
basis for the null space of , and let

(4.39)

Note that

(4.40)

and the image of is in the null space of , so
in (4.39) is zero. Thus, from (4.39) follows that

(4.41)

(4.42)

which implies that

(4.43)

(4.44)

and since and are full column rank, the columns
of and form two bases for the null space of .
Thus there exists a square invertible matrix such that

. Let be the matrix of change of basis
that puts in Jordan form: where is in
Jordan form. Thus , so if we denote the
first column of by , we have

(4.45)

where is the entry of (because is upper
triangular1). has full column rank (because has

1Note that is an eigenvector of , in fact each column of
is either an eigenvector or a generalized eigenvector of .



full column rank), so has full column rank which
implies that is not zero. But then (4.45) contradicts
Assumption (2.3). Thus is positive definite.

Finally, we must show that there is a unique positive def-
inite solution to the algebraic descriptor Riccati equa-
tion. Suppose there are two distinct solutions and ,
i.e.,

(4.46)

By taking the inverse of both sides of (4.46) and sub-
tracting the result for from the result for , we
get

(4.47)

which implies that, for all ,

(4.48)

Clearly if we show that , ,
have all their eigenvalues inside the unit circle, we im-
mediately have that . This can be shown by
noting that thanks to (4.46),

(4.49)

But (4.49) is a Lyapunov equation and thus it is enough
to show that

are controllable pairs. Suppose this is not the case, i.e.,
there exists a and a non zero such that

(4.50)

which implies that

(4.51)

(4.52)

Multiplying (4.51) on the right by , and using (4.52),
we obtain

(4.53)

which is a contradiction (Assumption (2.4)). Thus both
and have all

their eigenvalues inside the unit circle.

The solution to the algebraic descriptor Riccati equa-
tion (4.18) can be constructed using the matrix pencil

(4.54)

Theorem 4.2 The matrix pencil is regular, has no

eigenmode on the unit circle and if the columns of

form a basis for the stable eigenspace of , i.e.,

(4.55)

where eigenvalues of are inside the unit circle, then

(4.56)

is the unique positive definite solution of the algebraic
descriptor Riccati equation (4.18).

Proof Let

(4.57)

Suppose is on the unit circle and let denote the com-
plex conjugate of . Note that . To show that

is not an eigenmode of , we must show that is
invertible, or equivalently that

is invertible. Suppose this is not the case, i.e., there exist
and , not both zero, such that

(4.58)

But this implies, after premultiplication of the first equa-
tion by the complex conjugate transpose of , that

(4.59)

Thanks to Assumption (2.4), (4.59) implies that ,
which in turn implies that

(4.60)

which implies that , thank to Assumption (2.3).
But this is a contradiction, so has no eigenmode on
the unit circle.

Let denote the determinant of , and the de-
gree of . Thanks to the identity

(4.61)



by taking the determinant of both sides, we get
where equals the number of

rows of . So, since does not have any roots on the
unit circle, and consequently is square.

From (4.55), we get

(4.62)

(4.63)

which implies that

(4.64)

which is a Lyapunov equation and since has all its
eigenvalues inside the unit circle,

(4.65)

is symmetric positive semi-definite.

Lemma 4.3 The matrix is invertible.

Proof Suppose which implies that
. Thanks to (4.64), we get that

(4.66)

(4.67)

But from (4.63) we get which thanks to
(4.67) and (2.4) implies that . Thus
is -invariant. This implies that there exists at least one
eigenvector of in , i.e., there exist a non-zero
vector and a scalar such that and .
So by multiplying (4.62) on the right by we obtain

(4.68)

which thanks to (2.4) and (2.4) implies that .

But this is a contradiction because has full col-

umn rank. Thus is invertible.

Lemma 4.4 The following always holds

(4.69)

Proof Since has full column rank and is invert-
ible, and since is symmetric

(4.70)

Now we show that

(4.71)

From (4.63) it follows that . Let
be any vector such that , this implies,

thanks to (4.64), that

(4.72)

and thanks to (4.63), that

(4.73)

But (4.72) and (4.73), because of Assumption (2.4), im-
ply that and consequently is zero. Thus

. This proves (4.71).

Now we show that

(4.74)

From (4.62) and the full rankedness of , it is easy to
see that .

Let be any vector satisfying , then by pre-
multiplying by and postmultiplying by (4.64), we
obtain

(4.75)

(4.76)

From (4.75) we get that is -invariant. Let
be any eigenvector of satisfying , and the
associated eigenvalue, i.e., . Then,

(4.77)

(4.78)

Thus is necessarily zero. So the restriction of to
is nilpotent. We denote it by .

Now suppose is not a subset of , i.e.,
there exists a vector such that but .
This clearly implies that , i.e., the nilpotent ma-
trix has non trivial Jordan blocks which in turn im-
plies that there exists a vector such that

(4.79)

(4.80)

But then from (4.64) and (4.62) follows that

(4.81)

(4.82)

which because of Assumption (2.4), imply that .
But this is a contradiction. This shows (4.74). Finally,
(4.69) follows from (4.71) and (4.74).

Now we can show that

(4.83)

is invertible. Note that is
positive semi-definite. So if , then

(4.84)

(4.85)

But thanks to (4.69) and full rankedness of ,
. Thus (4.84) and (4.85) imply



that , which implies that . Thus
is invertible and positive-definite. From (4.62) it fol-

lows that and from (4.63), that

(4.86)

But has full column rank, so that is in-
vertible. Thus from (4.86) we obtain

. But then thanks to (4.83), we ob-
tain

(4.87)

By letting

(4.88)

we obtain the algebraic descriptor Riccati equa-
tion (4.18). Noting that (4.88) is equivalent to (4.56)
Theorem 4.2 is proved.

5 CONCLUSION

We have proposed a recursive solution to a very general
discrete LQ optimization problem. We have studied the
asymptotic properties of this problem and given a con-
structive solution for the limiting case as the length of
the interval goes to infinity.
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