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Auxiliary signal design for failure detection in
uncertain systems

R. Nikoukhah, S. L. Campbell and F. Delebecque

Abstract—An auxiliary signal is an input signal that enhances the identi-
fiability of a model based on input-output observations. Assuming that the
normal and the failed behaviors of a process can be modeled by two linear
uncertain systems, failure detectability can be seen as a multi-model iden-
tification problem. In this paper, we extend previous results on auxiliary
signal design for multi-model identification to a larger class of uncertain
systems.
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I. INTRODUCTION

There are two approaches to the problem of failure detection
and isolation. The first is a passive approach where the detector
monitors the inputs and the outputs of the system and decides
whether (and if possible what kind of) a failure has occurred.
This is done by comparing the measured input-output behavior
with “normal” behavior of the system. The passive approach is
used to continuously monitor the system in particular when the
detector has no way of acting upon the system, for material or
security reasons. Most of the work in the area of failure detec-
tion is geared towards this type of approach [1], [12], [15].

The active approach to failure detection consists in acting
upon the system on a periodic basis or at critical times using a
test signal, which we call an auxiliary signal, in order to exhibit
abnormal behaviors which would otherwise remain undetected
during normal operation. The detector can act by taking over
part or all of the inputs of the system for a period of time: the
test period. The decision whether or not the system has failed
should be made at (and if possible before) the end of the test
period. The structure of the failure detection method considered
in this paper is depicted in Figure 1.
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Fig. 1. Active failure detection.

The design of auxiliary signals has been a major issue in sys-
tem identification but their use for failure detection has been
introduced in [16], [6], [7]; see also [14]. The auxiliary signal
in these works are considered to be linear inputs of stochastic
models and their objective is to optimize some statistical prop-
erties of the detector. In [9], a method for guaranteed failure
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detection was presented in which perturbations were modeled
as polyhedral sets. The method was based on solving large lin-
ear programming problems.

The auxiliary signal design problem for robust multi-model
identification has been studied [10], [11]. In [10], [11], we as-
sume that we have two candidate models and we seek an auxil-
iary signal of least energy that can guarantee on-line identifica-
tion of the correct model.

In this paper, we consider the same problem but we allow for
more general noise models. This enables us, in particular, to
capture model uncertainties more effectively.

II. PROBLEM FORMULATION

A. System models

The true system model is supposed to be one of the following
two models over the test period :

(1)

(2)

(3)

for and . is the auxiliary signal input, is the measured
output, ’s are the states and ’s are uncertainty inputs and

’s represent uncertainty outputs. , , , , , ,
are matrices of appropriate dimensions. These matrices could
be time varying but each entry must be a continuous function of
time. Finally, we assume that the ’s have full row rank.

The assumption on the uncertainty inputs and outputs are

(4)

measures the size of the disturbances that our
model identification is to be robust to.

Note that the states of the two models and need not have
the same dimensions. The same is true for uncertainties
and . The only things that tie together the two models
are and .

This formulation of uncertain systems allows us to model un-
certain systems represented as follows:

(5)

(6)

where

(7)
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and where the initial condition satisfies:

(8)

The set of uncertain systems modeled this way is included in the
set of uncertain systems modeled by (1)-(4). To see this, simply
let

(9)

See [13] for more details.

We shall make the assumption hereafter that ,
, are convex functions. This condition which is slightly

stronger that “strict verifiability” in [13] is always true for suffi-
ciently small ’s. This assumption can be somewhat relaxed as
we shall see later.

B. Proper auxiliary signal

We say that the vector function is a proper auxil-
iary signal if its application implies that we are able to always
distinguish the two candidate models based on observation .

Definition II.1: The auxiliary signal is not proper if there
exist , , , , , and satisfying (1), (2), (3) and (4)
both for and . The auxiliary signal is called proper
otherwise.

Definition II.2: Let denote the set of proper auxiliary sig-
nals . Then,

(10)

is called the separability index associated with (1)-(2).
Clearly, is a lower bound on the energy of proper aux-

iliary signals. So, greater separability index implies existence
of lower energy proper auxiliary signal. The separability in-
dex is zero when there is no proper auxiliary signal. Note that
if a proper auxiliary signal exists, then the minimum norm is
nonzero since the are surjective.

Auxiliary signal being not proper means that there exist ,
, , , , and compatible with (1)-(2), , such

that

(11)

We can rewrite this inequality as follows

(12)

where

(13)

We thus obtain the following characterization of properness.
Lemma II.1: The auxiliary signal is not proper if and only

if

(14)

where the infimum is taken over , and in , subject
to (1)-(3), .

Note that the output can easily be eliminated from the con-
straints (1)-(3), , by subtracting (3) for from (3)
for , giving

(15)

We thus end up with an infimum taken over , the set of
functions satisfying the constraints (1),

, and (15).

Let us now define the following function which will prove
very useful later on,

(16)

Lemma II.2: For all , for , is
defined and has the following properties:
1. it is zero for and ,
2. it is quadratic in , i.e., for all scalar , .
3. it is a continuous and concave function of ,

Lemma II.3: For all , the infimum is attained
in (16), and if , the minimum is unique and continu-
ous in .

Theorem II.1: The function has at least one saddle point
on and

(17)
Corollary II.1: Let be a saddle point

of on . If and , then

(18)
Our original problem which consisted in finding a minimum

energy proper auxiliary signal can now be expressed as fol-
lows:

subject to (19)

Note that we have excluded the cases and because
as shown in Lemma II.2.

Using the fact that is quadratic in (Lemma II.2), we
obtain the following fundamental result:

Theorem II.2: Let

(20)

Then

(21)

where is the separability index defined previously.
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Note that the larger is, the easier it is to separate the two
models. And when , then the two models are indistin-
guishable no matter what the input is. So, can be consid-
ered as the deterministic counterpart of the Kullback distance
[8] between two systems used in some stochastic formulations.
Another interpretation of is in terms of signal to noise ratio:

can be seen as the smallest signal to noise ratio required
for perfect identification.

III. COMPUTATION OF THE SEPARABILITY INDEX

The separability index can be computed if we can compute
.

To simplify the notations, let

(22)

Then the constraints (1), , and (15) can be expressed as

(23)

(24)

(25)

and the function becomes

(26)

where (with slight abuse of notation)

(23) and (25) hold
(27)

and

(28)

All the results presented so far hold as long as System (23)-
(25) with

(29)

is strictly verifiable. Strict verifiability here means that the set of
satisfying (23)-(25) and (29) is bounded, or equivalently

that is convex in on . This condition is of
course implied by our original assumptions.

Lemma III.1: System (23)-(25) with noise model (29) is
strictly verifiable if and only if the Riccati equation

(30)

has a positive-definite solution on .
This result is a straightforward extension of Theorem 4.3.1 in
[13].

Note that as ’s go to zero (and thus goes to zero), the
Riccati equation (30) converges to the standard Kalman filtering
Riccati equation which always has a solution.

A. Computation of

Since is a quadratic function of , we can transform
the optimization problem (20) as follows:

(31)

where is obtained as the smallest value of for which
the solution is not unbounded.

Theorem III.1: if and only if the Riccati equa-
tion

(32)

has a solution on where

(33)

Since the value of is determined by the existence of a
solution to the Riccati equation (32), it is easy to see that there
is a relationship between and the interval length . In
particular, the larger is, the larger is going to be.

The algorithm for determining works as follows. Pick
a , solve the Riccati equation (32) with a standard ode (ordi-
nary differential equation) solver and see how far it goes. If it
goes beyond , then reduce and start over. If the solution of
the Riccati equation diverges before, increase and start over.
Using a simple bisection method, can be found with de-
sired accuracy.

Note that for , this Riccati equation reduces to (30)
which, we know, has a solution.

Note however that for , the Riccati equation (32)
may diverge at . In most cases, this does not happen. For
example, it can be shown that if the models are time-invariant,
the Riccati equation always diverges at . To construct an
academic example where , consider the case where the
matrix is identically zero over the interval for some

. If the Riccati equation (32) has a solution over ,
then it has a solution over because this Riccati equation
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on is just a linear equation. So if is such that (32)
doesn’t have a solution on , it cannot have a solution on

either.
To see the reason for this behavior, note that in this case, the

observation of over does not provide any useful infor-
mation for identification purposes. The separability index which
is an increasing function of the length of the test period, is con-
stant from on. In this case, there is no point using a test period
with since we are not going to have a superior separabil-
ity index anyway.

So, in the unlikely event that the Riccati equation (32) di-
verges at , we simply reduce the test period by letting

. We will have then a faster identification scheme with-
out having to pay a higher price in terms of the auxiliary signal
energy. In the sequel, we shall suppose that the Riccati equa-
tion (32) diverges at and has a solution on .

B. Computation of the separability index

In the previous section, we have seen how to compute ,
for any given . Here, we use this to compute the separability
index, based on (21). Even though is not concave, it has
nice properties making the optimization problem (21) numeri-
cally tractable. In particular, thanks to Lemma II.2, we see that

is the supremum over concave functions each of which
is zero at and . Using this fact, we obtain the
following result.

Lemma III.2: For any and satisfying
,

(34)

The proof follows a straightforward geometric argument illus-
trated in Figure 2. The key idea is that is the supre-
mum over concave functions going through the points and

, so it remains necessarily below the two dashed lines in-
side (and above outside).

Fig. 2. A typical as a function of .

Now consider the following simple optimization strategy for
estimating which consists of taking the maximum of
for regularly spaced values of over :

(35)

Then, thanks to Lemma III.2, it is straightforward to show that

(36)

So for example by simply taking , the worst possible
error in would be a factor of two.

The optimization method (35), thanks to (36), allows us to
compute with the desired precision. We can also use more
sophisticated algorithms to estimate and even couple the
and iterations.

IV. CONSTRUCTION OF THE AUXILIARY SIGNAL

Once we have computed , an optimal value of in (21), and
the separability index , we can proceed with the construction
of minimal energy proper auxiliary signal .

Theorem IV.1: An optimal auxiliary signal is given as any
non-trivial solution of the two-point boundary-value system:

(37)

with boundary conditions:

(38)

(39)

where

(40)

(41)

(42)

and where

(43)
We already know that this two-point boundary-value system

has non-zero solutions for and that we have computed.
It is exactly these solutions which give us the optimal auxiliary
signal as

(44)

Note that the norm of equals giving which
is exactly the limit that guarantees that is proper (see (19)).

V. CONCLUSIONS

We have presented a methodology for error-free system iden-
tification in the situation where we have two candidate uncer-
tain linear models and where we have control over the input. A
method for the construction of an optimal input (auxiliary sig-
nal) is given. This work has applications to failure detection and
identification.
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