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Abstract

This paper describes an active approach for model
identification and failure detection in the presence of
quadratically bounded uncertainty. After developing
the underlying geometry, two particular examples of
this approach involving static and continuous models
are described. Several examples are given.

1 Introduction

There are two general approaches to failure detec-
tion and isolation. One is a passive approach where
a detector monitors input and outputs of the system
and decides whether, and if possible what kind of, a
failure has occurred. A passive approach is used for
continuous monitoring. The detector has no way of
acting upon the system.

In contrast, in an active approach the system is acted
upon on a periodic basis or at critical times using a
test signal (auxiliary signal) to exhibit abnormal be-
haviors. The decision of whether or not the system
has failed should be made by the end of the test pe-
riod. The active approach has the advantages that it
can sometimes detect failures that are not detectable
during the normal operation of the system. This is
especially important for evaluating subsystem status
before the subsystem’s performance becomes cru-
cial. An example would be evaluating the brakes

Figure 1: General system structure.

while moving but before a truck has to stop. An ac-
tive approach also often permits quicker detection of
a failure. Of course, it is usually important that the
test signal be small in some sense in order to not in-
terfere with normal operation.

In [2, 3, 4, 5] we have begun the investigation of
a multi-model active approach for model identifica-
tion and failure detection. These earlier papers have
focused on the theory and computation for various
special cases. As this work has progressed a general
framework encompassing all of these cases and sev-
eral additional ones has begun to become evident.
This paper will discuss this general framework for
the first time.

2 Geometry of the approach

The structure of the active failure detection method
considered here is described in Figure 1. The system
is acted on by both a control input u and the auxil-
iary signal v. The system is subject to noise ν and
there is an output y. The information available for
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Figure 2: No guaranteed detection.

the decision is u, v, y. The auxiliary signal v is pre-
computed and known while u, y become available in
real time during the test period. Thus u, y cannot be
used in the design of the detection filter. They can
only be used in its application.

Failure detection is to be robust with respect to the
noise ν. It is assumed that the noise satisfies a
quadratic bound. Depending on the quadratic form
we will see that this includes both norm bounded
noise and model uncertainty. The approach pre-
sented here can be applied to more than two models
[2] but we focus here on the two model case. It is
assumed that there are two possible models, Model
0 and Model 1. For a given auxiliary signal v we de-
fine Ai(v) to be the set of input-output pairs (u, y)
consistent with Model i. That is, those pairs which
are realizable by that model. Thus

A0(v): set of normal input-outputs.

A1(v): set of input-outputs when failure occurs.

Failure detection consists of observing the inputs
and outputs and deciding to which set they belong.
For guaranteed detection we need that

A0(v) ∩ A1(v) = ∅. (1)

In this paper we focus on linear models of different
types. Suppose that a given v does not give guaran-
teed detection. Then we have the situation in Fig-
ure 2. As we apply increasing amounts of v, the
Ai(v) move in the direction of the arrows as indi-
cated in Figure 3. If the Ai(v) are bounded in the
appropriate directions, then we reach a multiple of v
where the Ai(v) are tangent as in Figure 4, and after
that they are disjoint. Guaranteed detection occurs

Figure 3: Increasing the magnitude of v.

Figure 4: Guaranteed detection with minimal v.

when the sets Ai(v) are disjoint or tangent. In Fig-
ures 2-4 the Ai(v) stayed a constant size and shape.
We will see later that for some choices of noise mea-
sure that the Ai(v) can also grow as v s increases.

The goal then is to have an auxiliary signal v of the
smallest possible size and an easily computed func-
tion µ = h(u, y) so that the value of µ will tell us
whether failure has occurred. Sections 3 and 4 de-
velop the needed theory for one model. Section 5
then considers auxiliary signal design when there are
two models.

3 Static Case

It is instructive to consider first linear systems in the
static case. If one then thinks of the matrices as be-
ing operators this motivates a number of later devel-
opments.

Absence of uncertainty: If we have no uncertainty
the model is just

y = Gu (2)



Figure 5: Additive uncertainty.

where G is m × n and 4≥ m. For the system (2) we
can use a residual-based test:

µ = T (y − Gu) = H

(
u
y

)
(3)

where H = T
(
−G I

)
. Realizability of {u, y} is

equivalent to µ being zero.

Additive uncertainty: A more realistic case is when
we have additive uncertainty

y = G1u + G2ν (4)

where G1 and G2 are matrices. We assume G2 is full
row rank. The noise ν is assumed to satisfy (here ‖·‖
is the usual Euclidian norm):

‖ν‖2 < d. (5)

as illustrated in Figure 5. Then {u, y} will be realiz-
able if there exists a ν satisfying (5) and (4).

In order to construct a residual-based test to deter-
mine the realizability of a given {u, y}, we consider
the optimization problem:

γ(u, y) = min
ν

‖ν‖2 (6)

subject to

y = G1u + G2ν. (7)

The function γ(u, y) provides the realizability test.

If γ(u, y) < d, then {u, y} is realizable.
If γ(u, y) ≥ d, then {u, y} is not realizable.

Figure 6: Realizable set for Example 1.

We must express γ directly in terms of {u, y}. The
solution to the optimization problem (6), (7) is

γ(u, y) =

(
u
y

)T(−GT
1

I

)(
G2G

T
2

)−1(−G1 I
) (

u
y

)
.

Thus if we let µ = H

(
u
y

)
where H satisfies

HT H =

(
−GT

1

I

) (
G2G

T
2

)−1 (
−G1 I

)
,

we have γ(u, y) = ‖µ‖2. Then the realizability test
becomes ‖µ‖2 < d. If this test does not hold, then
we have a failure.

Example 1 Consider the following simple example

y = u + ν, ν2 < 1.

The realizable set {u, y} is given by

γ(u, y) = (y − u)2 < 1

and is illustrated in Figure 6.

Slope uncertainty: Of course, in many applications
there is uncertainty in the models themselves. To
include this type of uncertainty we consider uncer-
tainty in the following form which follows the for-
mulation of [6]:

y = (G11 + G12∆(I − G22∆)−1G21)u (8)



Figure 7: Model uncertainty.

where ∆ is any matrix whose maximum singular
value σ̄ satisfies

σ̄(∆) ≤ 1. (9)

Note that (8) is a perturbation of

y = G11u. (10)

This corresponds to modeling an uncertain gain as
shown in Figure 7. The system of Figure 7 can be
re-expressed as

y = G11u + G12ν (11)

z = G21u + G22ν (12)

with

ν = ∆z. (13)

Note that combining (13) with (12) we get

ν = ∆(G21u + G22ν) (14)

Solving for ν and substituting into (11) gives (8).

Since (9) holds, we get from (13) that ‖ν‖2 ≤ ‖z‖2.
Thus the characterization of realizability is

‖ν‖2 − ‖z‖2 ≤ 0. (15)

To get this in terms of just {u, y} we again set up an
optimization problem. Let

γ(u, y) = min
ν,z

(
ν
z

)T

J

(
ν
z

)
(16)

where

J =

(
I 0
0 −I

)
, (17)

and {v, z} satisfy (11) and (12) for given {u, y}.
These constraints can be expressed as:

G1

(
u
y

)
= G2

(
ν
z

)
(18)

G1 =

(
−G11 I
−G21 0

)
, G2 =

(
G12 0
G22 −I

)
.(19)

Let A⊥ be a matrix of maximal full column rank
such that AA⊥ = 0. That is, A⊥ is a maximal rank
right annihilator. Then the solution of the above op-
timization problem is as follows. Suppose

G2⊥JGT
2⊥ > 0. (20)

Then the solution to optimization problem (16) is

γ(u, y) =

(
u
y

)T

GT
1 (G2JGT

2 )−1G1

(
u
y

)
. (21)

Example 2 Suppose that (8) is

y = (1 + ∆)u (22)

with |∆| ≤ 1. From (8), it is easy to see that we can
take G22 = 0 and G11 = G12 = G21 = 1. Thus

G1 =

(
−1 1
−1 0

)
, G2 =

(
1 0
0 −1

)
. (23)

H can be obtained using the J-spectral factorization.
It is easy to verify that (G2JGT

2 )−1 = J so that we
can let H = G1, that is,

µ =

(
y − u
−u

)
. (24)

The realizability test (21) then becomes

γ(u, y) = µT Jµ = y2 − 2uy ≤ 0. (25)

To see why this inequality is correct, simply note that
y2 − 2uy = u2(∆2 − 1). This inequality defines the
set of realizable {u, y} and is illustrated in Figure 8.



Figure 8: Realizable set for Example 2.

Note that in Figure 6 the set of y’s for a given u stays
the same size while the set varies in size with u in
Figure 8. A similar behavior occurs when designing
auxiliary signals later in this paper. The Ai(v) are
fixed size with additive uncertainty and vary in size
with model uncertainty.

General uncertainty model: In order to capture
both additive and slope uncertainties we consider the
more general model

G1

(
u
y

)
= G2

(
ν
z

)
(26)

with G2 full row rank and with the noise constraint,

(
ν
z

)T

J

(
ν
z

)
< d (27)

where J = diag(I,−I). This is a linear model with
a quadratic criteria on the possible noises and pertur-
bations.

Example 3 Consider the following system
(
−1 1
−1 0

) (
u
y

)
=

(
1 0
0 −1

) (
ν1

ν2

)
(28)

with
(

ν1

ν2

)T (
1 0
0 −1

) (
ν1

ν2

)
< 1. (29)

�

Figure 9: Realizable set for Example 3.

This system is closely related to Example 2. The re-
alizable set is defined by γ(u, y) = y2 − 2uy < 1
and is illustrated in Figure 9.

4 Dynamical systems

Continuous and discrete systems are of interest but
space allows us only to consider the continuous case.
Our approach builds on the formulations in [6]. The
static case just discussed leads to the following un-
certain dynamical system modeled over [0, T ]:

ẋ = Ax + Bu + Mν, (30)

z = Gx + Hu, (31)

y = Cx + Du + Nν (32)

where ν and z are respectively the noise input and
noise output representing model uncertainty. N is
full row rank.

The constraints on the noises are:

x(0)T P−1
0 x(0)

+

∫ s

0

‖ν‖2 − ‖z‖2 dt < d, ∀s ∈ [0, T ]. (33)

which is the continuous analogue of (15).

No weights on ν, z are needed since they can be in-
corporated into the model coefficients. This formu-
lation includes both additive uncertainty and model
uncertainty.



For example, as shown in [6] the uncertain system
(30), (31) can be used to model

ẋ = (A + M∆G)x + (B + M∆H)u,

y = (C + N∆G)x + (D + N∆H)u

σ(∆(t)) ≤ 1

x(0)T P−1
0 x(0) < d

By formulating as an optimization problem, we ob-
tain the realizability test

γs(u, y) < d, for all s ∈ [0, T ] (34)

where

γs(u, y) =

∫ s

0

µT R−1µ dt (35)

and µ is the output of the following system

˙̂x = (A − SR−1C̄ − PCT R−1C̄)x̂

+(S + PC̄T )R−1

(
y − Du
−Hu

)
+ Bu

µ = C̄x̂ −
(

y − Du
−Hu

)

with x̂(0) = x0. P is the solution of the Riccati
equation

Ṗ = (A − SR−1C̄)P + P (A − SR−1C̄)T

−PC̄T R−1C̄P + Q − SR−1ST , P (0) = P0

where

Q = MMT , S =
(
MNT MJT

)
R =

(
NNT NJT

JNT −I

)
, C̄ =

(
C
G

)
.

We also assume that

N⊥
T (I − JT J)N⊥ > 0, ∀t ∈ [0, T ].

5 Auxiliary signal design

The discussion so far has only addressed how to
characterize realizability when there is one model
present. We now consider the situation where there
are two models and an auxiliary signal v which is
to be constructed to aid in identification. We again
begin by considering the static case.

5.1 Static case

Let v be the auxiliary input. Suppose that there are
two models. By using ν to represent ν and z, and by
breaking up the input u into two inputs u and v, we
get

(
Xi Yi Zi

)

v

u
y


 = Hiνi (36)

with the constraints,

νT
i Jiνi < 1, (37)

for i = 0, 1. The case i = 0 corresponds to the un-
failed system and i = 1, the failed system. Here J is
a signature matrix (diagonal matrix with +1 and −1
entries). Vectors u and y are the on-line measured
input and output as before.

We want a test signal v that not only permits per-
fect identification (1) but also is small in some sense.
If the minimization is on the norm of v, our prob-
lem becomes that of finding a v of smallest norm for
which there exist no solution to (36) and (37), for
i = 0 and 1 simultaneously.

Example 4 Consider the following simple systems:

−4v + y = ν0 (38)

ν2
0 < 1 (39)

and

−
(

1
1

)
v +

(
1
0

)
y =

(
1 0
0 −1

)
ν1 (40)

νT
1

(
1 0
0 −1

)
ν1 < 1. (41)

Figure 10 shows the input-output sets and the mini-
mal v∗ that provides perfect identification.

Non-existence of a solution to (36) and (37) is equiv-
alent to:

σ(v) ≥ 1 (42)

where

σ(v) = inf
ν0,ν1,u,y

max(νT
0 J0ν0, ν

T
1 J1ν1) (43)



Figure 10: Realizable sets for Example 4 and mini-
mal v.

subject to (36), i = 0, 1. It can be shown that σ(v)
in (43) can be expressed as:

σ(v) = max
β∈[0,1]

inf
ν0,ν1,u,y

(βνT
0 J0ν0 + (1 − β)νT

1 J1ν1)

subject to

(
X0 Y0 Z0

X1 Y1 Z1

) 
v

u
y


 =

(
H0 0
0 H1

) (
ν0

ν1

)
. (44)

The optimization problem (43) can then now be ex-
pressed as follows:

σ(v) = max
β

φβ(v) (45)

where

φβ(v) = min
ν0,ν1,u,y

(βνT
0 J0ν0 + (1 − β)νT

1 J1ν1) (46)

subject to (44).

Since u and y appear only in the constraint (44), we
can eliminate them from the optimization problem
by premultiplying (44) with

(
W0 W1

)
=

(
Y0 Z0

Y1 Z1

)⊥
(47)

where A⊥ is a maximal rank left annihilator of A.

So the optimization problem (46) can be expressed
as follows:

φβ(v) = inf
ν

νT Jβν (48)

subject to

Gv = Hν (49)

where

G =
(
W0 W1

) (
X0

X1

)
,

H =
(
W0 W1

) (
H0 0
0 H1

)
,

ν =

(
ν0

ν1

)
, Jβ =

(
βJ0 0
0 (1 − β)J1

)
.

Proper auxiliary signal and the separability in-
dex: An auxiliary signal v is proper if the two re-
alizable sets A0(v) and A1(v) are disjoint. Thus an
auxiliary signal v is proper if and only if σ(v) ≥ 1.

Let V denote the set of proper auxiliary signals v.
Suppose that v is measured in an inner product norm
so there exists a positive definite matrix Q such that
the norm of v is (vT Qv)1/2. Then

γ∗ =

(
min
v∈V

vT Qv

)− 1
2

, (50)

is called the separability index for positive definite
matrix Q. The v realizing the min is called an opti-
mal proper auxiliary signal.

Using the fact that σ(v) is quadratic in v, the problem
of finding an optimal auxiliary signal can be formu-
lated as follows:

λ∗ = max
v �=0

σ(v)

vT Qv
= max

v �=0,β∈[0,1]

φβ(v)

vT Qv

= max
v �=0,β∈[0,1]

vT Vβv

vT Qv
(51)

for some symmetric matrix Vβ . We are assuming
here that HT

⊥JβH⊥ > 0. Let

λβ = max
v �=0

vT Vβv

vT Qv
. (52)



Then clearly λ∗ = maxβ λβ . But λβ is the largest λ
such that

vT Vβv − λvT Qv = 0. (53)

So if λ∗ > 0, then the set of proper auxiliary signals
is not empty and any optimal proper auxiliary signal
is a solution of (53) satisfying

vT Qv =
1

λ∗ . (54)

If λ∗ ≤ 0, then the set of proper auxiliary signals is
empty. If λ∗ > 0, then the separability index is given
by

γ∗ =
1√
λ∗

. (55)

Example 5 For Example 4, φβ(v) is:

inf
ν0,ν10,ν11


 ν0

ν10

ν11




T 
β

1 − β
−(1 − β)





 ν0

ν10

ν11




subject to

−4 1
−1 1
−1 0




(
v
y

)
=


1 0 0

0 1 0
0 0 −1





 ν0

ν10

ν11


 .

We can show that φβ(v) is defined for all β ∈ [0, 1]
and is given by φβ(v) = (9β − 1)(1 − β)v2. So
σ(v) = maxβ∈[0,1] φβ(v) can easily be computed
in this case by setting the derivative of φβ(v) with
respect to β to zero to get β∗ = 5/9. This gives
σ(v) = 16

9
v2 and thus v∗ = 3/4.

Alternative solution: Instead of performing two op-
timizations, we can combine them to have a one step
solution. Suppose that HT

⊥JβH⊥ > 0. Then λβ cor-
responds to the largest λ such that

det(λHJ−1
β HT − GGT ) = 0. (56)

Computing

λ∗ = max
β∈[a,b]

λβ (57)

a proper auxiliary signal exists if and only if λ∗ > 0.
Then an optimal auxiliary signal is

v∗ = Kζ∗ (58)

where K = GlHJ−1
β HT , Gl is any left-inverse of G,

ζ∗ = αζ where ζ is any non-zero vector satisfying

(λ∗HJ−1
β∗ HT − GGT )ζ = 0 (59)

where β∗ is a value of β maximizing in (57), and

α =
1√

λ∗ζT KT QKζ
. (60)

5.2 Continuous-time case

By using ν to represent ν and z, and by breaking up
the input u into two inputs u and v, we obtain the
following models:

ẋi = Aixi + Biv + B̄iu + Miνi, (61)

Eiy = Cixi + Div + D̄iu + Niνi (62)

where i = 0, 1 correspond to normal and failed sys-
tems. Ni’s are assumed to have full row rank. The
noise constraints are

Si(v, s) = xi(0)T P−1
i0 xi(0)

+

∫ s

0

νT
i Jiνi dt < 1, ∀s ∈ [0, T ], (63)

where the Ji’s are signature matrices.

Non-existence of a solution to (61), (62) and (63) is
equivalent to:

σ(v, s) ≥ 1 (64)

where

σ(v, s) = inf
ν0,ν1,u,y

x0,x1

max(S0(v, s),S1(v, s)), (65)

subject to (61)-(62), i = 0, 1. As in the static case,
we can reformulate (65) as:

σ(v, s) = max
β∈[0,1]

φβ(v, s) (66)

where

φβ(v, s) = inf
ν0,ν1,u,y

x0,x1

βS0(v, s) + (1 − β)S1(v, s)



subject to (61)-(62), i = 0, 1.

We consider here only the case where there is no u.
That is, all the inputs are used as an auxiliary signal
for failure detection. Let

x =

(
x0

x1

)
, ν =

(
ν0

ν1

)
, A =

(
A0 0
0 A1

)
,

M =

(
M0 0
0 M1

)
, N =

(
F0N0 F1N1

)
,

D = F0D0 + F1D1, C =
(
F0C0 F1C1

)
,

B =

(
B0

B1

)
, P−1

β =

(
βP−1

0,0 0
0 (1 − β)P−1

1,0

)
,

Jβ =

(
βJ0 0
0 (1 − β)J1

)
,

(
F0 F1

)
=

(
E0

E1

)⊥
.

Then we can reformulate the problem (65) as:

φβ(v, s) = inf
ν,x

x(0)T P−1
β x(0) +

∫ T

0

νT Jβν dt

subject to

ẋ = Ax + Bv + Mν

0 = Cx + Dv + Nν.

Construction of an optimal proper auxiliary sig-
nal: For the sake of simplicity of presentation, we
start by considering that the optimality criterion used
for the auxiliary signal is just that of minimizing its
L2 norm. Thus the problem to solve is:

min
v

‖|v‖|2, subject to max
β∈[0,1]
s∈[0,T ]

φβ(v, s) ≥ 1 (67)

where

‖|v‖|2 =

∫ T

0

‖v‖2 dt.

The reason we take the max over s is that the max-
imum value of φβ(v, s) does not always occur at
s = T . It does in most cases though.

As we did in the static case, we reformulate the op-
timization problem as follows

λβ,s = max
v �=0

φβ(v, s)

‖|v‖|2 . (68)

Suppose for some β ∈ [0, 1], that we have
N⊥

T JβN⊥ > 0, ∀ t ∈ [0, T ], and that the Riccati
equation

Ṗ = (A − SR−1C)P + P (A − SR−1C)T

−PCT R−1CP + Q − SR−1ST , P (0) = Pβ

where
(

Q S
ST R

)
=

(
M
N

)
J−1

β

(
M
N

)T

(69)

has a solution on [0,T]. The values of Q, S, R de-
pend on β. Then λβ,s is the smallest λ for which the
Riccati equation

Ṗ = (A − SλR
−1
λ C)P + P (A − SλR

−1
λ C)T

−PCT R−1
λ CP + Qλ − SλR

−1
λ ST

λ , P (0) = Pβ

where
(

Qλ Sλ

ST
λ Rλ

)
=

(
M B
N D

) (
Jβ 0
0 −λI

)−1 (
M B
N D

)T

has a solution on [0, s]. The values of Qλ, Sλ, Rλ

depend on β as well as λ.

This result allows us to compute

λβ = max
s

λβ,s

which can be used to compute

λ∗ = max
β

λβ.

This gives the separability index as

γ∗ =
1√
λ∗

.

and is used to compute the optimal auxiliary signal
v∗.

Construction of optimal auxiliary signal: Assume
β∗ (an optimal β) and λ∗ are computed. Let (x, ζ)



Figure 11: Typical minimum proper v.

be any non-zero solution of the two-point boundary-
value system:

d

dt

(
x
ζ

)
=

(
Ω11 Ω12

Ω21 Ω22

) (
x
ζ

)

with boundary conditions:

x(0) = Pβ∗ζ(0)

ζ(T ) = 0.

where

Ω11 = −ΩT
22 = A − Sλ∗R−1

λ∗ C

Ω12 = Qλ∗ − Sλ∗R−1
λ∗ ST

λ∗

Ω21 = CT R−1
λ∗ C

This boundary value problem is not well-posed and
has non trivial solutions (x∗, ζ∗). An optimal auxil-
iary signal is (for simplicity suppose D = 0)

v∗ = αBT ζ∗

where α is a constant such that ‖|v∗‖| = 1/γ∗. A
typical auxiliary signal is given in Figure 11. The
shape of the v can vary depending on the models,
the size of the weight on the initial condition pertur-
bation, and the length of the interval. Several more
examples are in [2] and the other references.

6 Conclusion

We have described a framework for multi-model
identification and shown the form it takes for two

specific types of problems. In this approach the aux-
iliary signal design is done off line. It easy to im-
plement the algorithms in Scilab [1] or other CAD
packages. The on-line detection test can be imple-
mented efficiently using “Kalman type” filters or hy-
perplane tests but space does not permit discussing
this here.
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