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Abstract

Under the assumption that one of two given models is the
real underlying model of the system, a valid auxiliary signal
is defined as an input signal that allows the selection of the
correct model. Under the assumption that the noise energy
is bounded, the separability index is defined as the energy
of the proper auxiliary signal of least energy. A constructive
method for the computation of this index is presented.

1 Introduction

The design of auxiliary signals has been a major issue in
system identification; it has been studied in the framework
of multi-model identification, and in particular failure detec-
tion, in [9, 3, 4]; see also [7]. These works consider linear
statistical models. The work presented here is different in
that uncertainties are modeled as bounded energy signals and
zero-error identification is envisaged. A similar approach has
been undertaken in [6] for the study of robust failure detec-
tion problem.

In particular, we consider the problem of model selection.
We suppose that two models are available for the system,
one of which is correct. System outputs are measured, and
the inputs (auxiliary signal) can be chosen.

Let denote an auxiliary signal and let represent the
set of possible outputs associated with this input, if Model
were the correct model; similarly, let represent the set
of outputs under the assumption that Model is the correct
model. Then clearly for perfect identification we need that

(1.1)

The minimum energy required by to impose (1.1) is a mea-
sure of how distinct the two models are, and how easy it is to
distinguish them apart. We call it the separability index. In
this paper, we propose a constructive method for the compu-
tation of this index and the corresponding auxiliary signal.
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2 Problem formulation

2.1 System models

The true system model is supposed to be one of the following
two models

(2.1)

(2.2)

for and . is the auxiliary signal, is the output and
’s represent perturbations, noises and unmeasured inputs.
, , , , are matrices of appropriate dimensions.
’s have full row rank. The states of the two models and
need not have the same dimensions. The same is true for
and .
The two models are supposed to be stable and satisfy:

has full row rank on the -axis

(2.3)

2.2 Proper auxiliary signal

We say that the vector function is a proper auxiliary
signal if its application implies that we are able to always
distinguish the two candidate models based on observation

.

Definition 2.1 Suppose

(2.4)

Then, we say that the auxiliary signal is not proper if there
exist , , , , and satisfying (2.1), (2.2) and (2.4)
both for and . The auxiliary signal is called
proper otherwise.

Definition 2.2 Let denote the set of proper auxiliary sig-
nals . Then,

(2.5)

where denotes the -norm of , is called the separabil-
ity index associated with (2.1)-(2.2).

Here, we are interested in minimum energy proper auxil-
iary signals. Let us introduce an auxiliary cost function.



Definition 2.3 The function is the auxiliary cost func-
tion associated with problem (2.1)-(2.2) if

(2.6)

for where the infimum is taken over , and
subject to (2.1)-(2.2), .

Note that in (2.6) need not satisfy (2.4).

Lemma 2.1 For all , for , is defined and
has the following properties:

1. it is zero for and ,

2. it is quadratic in , i.e., for all scalar ,
.

3. it is a continuous function of ,

4. it is a strictly concave function of if the set of proper
auxiliary signals is not empty, otherwise it is identically
zero.

Theorem 2.1 Let

(2.7)

then

(2.8)

The proof is based on the fact that for all ,
if and only if is not proper.
Note that the larger is, the easier it is to separate the

two models. And when , then the two model are
indistinguishable no matter what the input is. So, can be
considered as the deterministic counterpart of the Kullback
distance [5] used in some stochastic formulations.

2.3 Problem simplification

As we have seen in the previous section, the first optimization
problem to solve is the following:

(2.9)

subject to

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

This problem can be expressed as follows:

(2.15)

subject to

(2.16)

where

(2.17)

(2.18)

and

(2.19)

Constraints (2.16) can be simplified without affecting the
solution of the optimization problem (2.15). For example,
clearly can be removed from the constraints by replacing
(2.11) and (2.13) with their difference. These simplifications
allow us to reduce the size of (2.16).

This type of simplification can be done systematically as
described in the following Lemma.

Lemma 2.2 There exist a full row rank matrix and a full
column rank matrix such that the set of ’s satisfying

(2.20)

is identical to that of (2.16), for all , where

has full column rank and

has full column rank .

Proof Let us first put the pencil in Kronecker
form. As shown in [8], there exist orthogonal matrices
and such that

(2.21)

where the the eigenmodes of the square pencils
and are respectively the finite and infinite eigen-
modes of , and are respectively



full row rank and full column rank, for all , and and
are respectively full row rank and full column rank. Let

(2.22)

Then (2.16) can be expressed as follows

(2.23)

It is straightforward to verify that there always exist ,
and such that (2.23) is satisfied. This means that the top
equations in (2.23) do not impose any constraint on and .
We can thus take

(2.24)

and of course .

It is straightforward to show that Lemma 2.2 can still be
used even if we generalize the two models (2.1)-(2.2) by al-
lowing for measured inputs (inputs which are measured on-
line similar to the output ) and unknown disturbances.

3 Construction of the separability index

3.1 Characterization of

We have seen that the separability index can be con-
structed from where

(3.1)

subject to constraint

(3.2)

The matrix is positive-definite and, thanks to Lemma 2.2,
we can assume that

has full column rank (3.3)

has full column rank, (3.4)

has full row rank (3.5)

has full row rank. (3.6)

Assumption (3.5) follows from (2.3), and (3.6) the full
rankedness of ’s.

The matrix pencil

(3.7)

plays a key role in the computation of .

Lemma 3.1 For large enough , the pencil

is regular,

has index 1,

has no (finite) eigenmodes on the -axis.

Proof It suffices to prove the three properties for the case
. Without any loss of generality, we can suppose that

(3.8)

(3.9)

This can be done by left multiplication of by an in-
vertible matrix and a trivial coordinate change. Thanks to
assumptions (3.3)-(3.6), it is easy to see that the pair
is observable, the pair is controllable on the -axis
and is positive definite.

The resulting pencil, with , can be expressed as
follows

(3.10)

One step application of the shuffle algorithm yields the -
matrix

which clearly is invertible. Thus is regular has in-
dex 1.

By left and right multiplication by invertible matrices, we
can transform the pencil as follows

(3.11)

Clearly the finite eigenmodes of are the eigenval-
ues of

But is the Hamiltonian associated with a standard LQ
problem, which thanks to observability of and con-
trollability of on the -axis, has no eigenvalue on
the unit circle.



Theorem 3.1 Let denote the set of all satisfying the three
conditions of Lemma 3.1. Then,

(3.12)

Proof Let us suppose, without any loss of generality, that
the system matrices are as in (3.8)-(3.9). Then the problem
(2.15) can be expressed as follows

(3.13)

subject to constraints

(3.14)

This problem is a standard problem. The solution to this
problem is given by the unique solution to

(3.15)

So, if consider the system

(3.16)

where

(3.17)

we get that

(3.18)

But then can be constructed from the Hamiltonian ma-
trix

(3.19)

where

(3.20)

It is shown in particular in [1] that if and only if
and has no eigenvalue on the -axis.

It is straightforward, but tedious, to show that the finite
eigenvalues of are the union of the set of eigenvalues
of and that of . But, as we have seen before, has
no eigenvalues on the -axis. The proof of the theorem then
follows from this, plus the fact that has index 1 if and
only if .

Lemma 3.2 The pencil is regular and has index 1 if
and only if

(3.21)

where is any highest rank left annihilator of .

Theorem 3.2 Let denote the largest value of for
which (3.21) does not hold. If then

if the pencil has no eigenmodes on the -axis,
then ,

if the pencil has an eigenmode on the -axis,
then .

3.2 Computation of the separability index

The results of the previous section can be used to construct
an algorithm based on the bisection method for the computa-
tion of , for any given . Note that is a lower bound
for so Theorem 3.2 gives us the necessary test for im-
plementing the algorithm.

can then be used to compute the separability index,
as seen previously:

(3.22)

Even though is not concave, it has nice proper-
ties making the optimization problem (3.22) numerically
tractable. In particular, thanks to Lemma 2.1, we can show
that is a sup over concave functions each of which is
zero at and . Using this fact, it is easy to show
the following result.

Lemma 3.3 Consider two scalars and satisfying
. Then

(3.23)

The proof follows a straightforward geometric argument and
is illustrated in Figure 3.2.

Now consider the following simple optimization strategy
for estimating which consists of taking the square-root of
the maximum of for regularly spaced values of

over :

(3.24)

Then, thanks to Lemma 3.3, it is straightforward to show that

(3.25)

This shows that we are not dealing with a difficult optimiza-
tion problem. We can of course use more sophisticated algo-
rithms to estimate and even couple the and iterations.



Figure 3.1: Since is the sup over concave functions
going through the points and , it remains neces-
sarily below the two dashed lines inside (and above
outside).
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