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Abstract

We give canonical forms for a general singular matrix

pencil from which several observer design problems are

easily solved. The geometrical basis of these forms is

emphasized. Algorithms for the robust computation of

the needed subspaces are given.

1. Introduction

Many of the various canonical forms, such as the Kro-

necker form, are di�cult to compute and are often pre-

sented in a nongeometric fashion. In this paper we de-

�ne certain subspaces and show how they can be com-

puted in a numerically robust fashion. Then we show

how these subspaces and algorithms are related to the

observer design algorithm discussed in [4].

2. Geometrical Theory and Algorithms

The range and nullspace (kernel) of a linear transforma-

tion E will be denoted K(E) and R(E) respectively. In

the sequel we will often use the same notation to denote

a linear map and its matrix representation. When no

confusion is possible we also use the matrix notation

to denote a linear map and its range. In particular,

E�1(F ) will denote the subspace E�1(R(F )). A ma-

trix will be called a basis if its columns are a basis for

the range.

Consider a pair of linear maps (E;F ): X ! Y or, equiv-

alently, a linear pencil sE�F , where X and Y are �nite

dimensional real vector spaces of dimension p and q re-

spectively. The pair of subspaces (Z � X ;Q � Y)

is (E;F )-invariant if E(Z) � Q and F (Z) � Q.

Simple examples of such pairs are Z = K(E);Q =

F (K(E)) and Z = F�1(E), Q = R(E). In ma-
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trix terms, this means that if X =
�
x1; : : : ; xp

�
and

Y =
�
y1; : : : ; yq

�
are matrices whose columns are ba-

sis of X and Y such that columns 1 to k1 of X span

Z and columns 1 to k2 of Y span Q, then the pair of

linear maps (E;F ) is represented in these bases by the

matrices:

(Y �1EX; Y �1FX) =

��
E �

0 ~E

�
;

�
F �

0 ~F

��
(1)

Here, 0 is (q� k2)� k1. Note that the restriction maps

E : Z 3 x! Ex 2 Q and F : Z 3 x! Fx 2 Q are well

de�ned. ~E (resp. ~F ) is the matrix representation of the

linear map: X=Z 3 x(modZ) ! Ex(modQ) 2 Y=Q

(resp. x(modZ) ! Fx(modQ)) in suitable basis. If

�1 (resp. �2) denotes the canonical projection x !

x(modZ) (resp. y ! y(modQ)), ~E (resp. ~F ) is de�ned

by ~E�1 = �2E (resp. ~F�1 = �2F ). We call the pair
~E; ~F the quotient pair associated with the pair (Z;Q).

2.1. Useful lemmas

In this Section we give some elementary lemmas and as-

sociated constructive algorithms that are used as build-

ing blocks for our observer construction. From a strictly

mathematical point of view row (or column) compres-

sion can be done just by left (or right) multiplication

by an orthogonal matrix. However, in order to compute

this orthogonal transformation in a robust manner, say

by a QR algorithm, it is necessary to allow for column

(or row pivoting.) Thus the permutation matrices could

be deleted from most of the theorems that follow but

we include them since the algorithms would use permu-

tation matrices.

First, we have the following simple lemma:

Lemma 2.1 If the pair (Z;Q) is (E;F )-invariant

and the pair ( ~Z; ~Q) is ( ~E; ~F )-invariant, then the pair

(��11
~Z; ��12

~Q) is (E;F )-invariant.

Let Z1 and Q1 be orthogonal basis of X and Y such

that the �rst k1 columns of Z span Z and the �rst k2



columns of Q1 span Q. Then Q1EZ1 =

�
0 ~E

�
and

QT

1 FZ1 =

�
F �

0 ~F

�
. Now, if Q2 and Z2 are orthogo-

nal matrices such that QT

2
~EZ2 =

�
� �

0 �

�
, QT

2
~FZ2 =�

� �

0 �

�
(where the zero block has k01 columns), then

Q = Q1diag(I;Q2) and Z = Z1diag(I; Z2) are orthogo-

nal. Columns 1 to k1+k
0

1 of Z span �1
�1 ~Z and columns

1 to k2+k02 of Q
T span �2

�1 ~Q. This construction gives

a numerically stable matrix implementation to the pre-

ceding lemma.

The following lemma shows how to numerically calcu-

late the subspace M�1(N ).

Lemma 2.2 Given two linear maps M : X1 ! Y and

N : X2 ! Y there exist two orthogonal matrices Q, Z1
and a permutation matrix P such that:

Q
�
MZ1 NP

�
=

� �
� �

0 M

� �
N

0

� �
where N has full row rank, rank(N ) = rank(N ), M

has full column rank. If k1 = dim(X1) � rank(M ),

then dim(M�1(N )) = k1 and the �rst k1 columns of

Z1 span M�1(N ).

Proof De�ne Q to be an orthogonal row compression

of N obtained by the QR decomposition of N with col-

umn pivoting. That is, QNP =

�
N

0

�
where N has

full row rank. Then, with k0 = rank(N ) = rank(N ),

the �rst k0 columns of QT span R(N ) and the vec-

tor x belongs to R(N ) i� Qx =

�
�

0

�
(with partition

compatible with

�
N

0

�
). Now, if Y is equipped with

the orthogonal basis QT , the matrix representation of�
M N

�
is

�
QM QNP

�
=

� �
M1

M2

� �
N

0

� �
The vectors of R(M ) which belong to R(N ) are clearly

obtained by a column compression ofM2. If Z1 is an or-

thogonal basis which realizes this column compression,

i.e. M2Z1 =
�
0 M

�
with rank(M) = rank(M2) =

dim(X1)� k1, then the �rst k1 columns of Z1 have M -

image

�
�

0

�
and they span M�1(N ). 2

In general P andQ are not useful and we can implement

the following algorithm

Algorithm [Z,k]=iminv(M,N)

p

of rows.

Outputs: Z, orthogonal matrix (order equal to the

number of columns of M ) and k, integer. The �rst

k columns of Z span M�1(N ). 2

Given two subspaces M and N of Y, we have the usual

lattice:

Lemma 2.3 Given two linear maps M : X1 ! Y and

N : X2 ! Y there exists two orthogonal matrices Q and

Z2 and a permutation matrix P such that:

Q
�
MP NZ2

�
=

2664
2664
M1

M2

0

0

3775
2664

N1 �

0 �

0 N2

0 0

3775
3775

where

�
M1

M2

�
has full row rank, N1 has full row rank

and N2 is square and nonsingular. If kI (resp. kM ,

resp. kMN) denotes the row dimension of the �rst block

(resp. the �rst two blocks, resp. the �rst three blocks)

in this partition, then the �rst kI columns of QT span

R(M ) \ R(N ) (resp. R(M ), resp. R
�
[ M N ]

�
=

R(M ) +R(N ))

Proof Performing the QR factorization ofM we obtain,

with Q1 an orthogonal matrix and P1 a permutation

matrix , the row compression of
�
M N

�
as

Q1[MP1 N ] =

"
M eN1

0 eN2

#

where M has full row rank. Then, by a QR row com-

pression of eN2 we have

Q2Q1[MP1 NP2] =

24 M N

0 N2

0 0

35
Here M has full row rank kM ,

�
M N

0 N2

�
has full

row rank kMN (in particular N2 has full row rank).

At this stage, the �rst kM columns of (Q2Q1)
T
span

R(M ) and the �rst kMN columns of (Q2Q1)
T

span

R([M N ]). A column compression of N2 yields24 N1

N2

0

35Z2 =
24 N11 �

0 N21

0 0

35 where N21 is square and

nonsingular. By Lemma 2.2, the �rst columns of Z2

span N�1(M ) and thus R

0@24 N11

0

0

351A= N (N�1(M ))



( ) ( ) , Q p

sion of

24 N11

0

0

35 (obtained by compressing N11 i.e.

Q3

24 N11

0

0

35 =

2664
N1

0

0

0

3775 ), where N1 has full row rank,

the �rst columns of QT

3 span R(N ) \ R(M ) and Q is

obtained by Q = Q3Q2Q1. 2

In general P and Z2 are not useful and we can imple-

ment the following algorithm:

Algorithm [Q,kI,kM,kMN]=spans(M,N)

Inputs: M and N two matrices with the same number

of rows.

Outputs: Q, an orthogonal matrix and three integers

kI � kM � kMN such that the �rst kI columns of QT

span R(M ) \ R(N ), the �rst kM columns of QT span

R(M ) and the �rst kMN columns of QT span R(M ) +

R(N ). 2

One use of this algorithm is that it provides a sim-

ple test to check if a given vector, say x, belongs to

R(M ) \ R(N ) (resp. R(M ), resp. R(M ) +R(N )): it

is su�cient to form the product Qx and examine its

zero entries.

2.2. Basic subspaces

Many subspaces associated with matrix pencils have

been introduced in the literature [3]. We consider here

two basic pairs of invariant subspaces. The pair (Z�f ,

Q�f ) is de�ned as the limit as k!1 of the decreasing

sequence:

Z�f (k + 1) = F�1(EZ�f (k)) Z�f (0) = X

Q�f (k + 1) = E(F�1Q�f (k)) Q�f (0) = Y

We note that Q�f = E(Z�f ) and Z�f = F�1(Q�f )

(which implies F (Z�f ) = R(F ) \Q�f ).

The second pair (Z�1;Q�1) is de�ned as the limit as

k !1 of the increasing sequences

Z�1(k + 1) = E�1(FZ�1(k)) Z�1(0) = 0

Q�1(k + 1) = F (E�1Q�1(k)) Q�1(0) = 0

We have Q�1(k + 1) = F (Z�1(k)) which implies

Q�1 = F (Z�1) and Z�1 = E�1(Q�1). In particu-

lar, E(Z�1) = R(E) \Q�1.

Theorem 2.1 Given a pair of linear maps (E;F ), the

pair of invariant subspaces (Z�f ;Q�f ) is such that its

associated restriction pencil (E�f ; F �f )

f �

� has the same right minimal indices and �nite ze-

ros as (E;F )

Proof We can assume without restriction that the

pair (E;F ) is in Kronecker block diagonal canonical

form. We examine, in that order, the behavior of

the sequences Q�f (1) = R(E), Z�f (1) = F�1Q�f (1),

Q�f (2) = E(Z�f (1)), Z�f (2) = F�1Q�f (2), : : :

Let n
(1)
0 ; n

(1)
1 ; : : : ; n

(1)
p be the number of Jordan

blocks of respective dimensions 1; 2; : : : ; p+1 at1. Let

r0; r1; : : : ; rd be the respective number of \r.m.i blocks"

of dimensions (1�0); (2�1); : : : ; (d+1�d) correspond-

ing respectively to the r.m.i's �0 = 0; : : : ; �l = l.

At the �rst step, Q�f (1) = R(E) is obtained by row

compressing E: the only zero rows are found in each

Jordan block at in�nity and each \r.m.i" block at posi-

tion say l1; l2; :::lp. Then Z�f (1) = F�1(Q�f (1)) is ob-

tained (see lemma 2.2) by selecting columns of F which

have zero entries at row li. At this step we see that we

discard
P

p

j=k n
(1)
j

+
P

d

i=k ri rows and columns. Then

we continue with a reduced pencil where the dimension

of each in�nite and \r.m.i" block has been reduced by

one. We determine Q�f (2) = E(Z�f (1)) by a row com-

pression of the E matrix restricted to the appropriate

selected columns and �nd Z�f (2) as in the �rst step. It

is easily seen that we have:

dim(Q�f (k))�dim(Q�f (k+1)) =

pX
j=k

(n
(1)
j

�k)+

dX
i=k

(ri�k)

and the algorithm stops when the reduced pencil has

no in�nite nor \r.m.i" block.

Theorem 2.2 Given a pair of linear maps (E;F ), the

pair of invariant subspaces (Z�1;Q�1) is such that its

associated restriction pencil (E�1; F �1)

� has no right minimal indices and no �nite zeros

� has the same right minimal indices and in�nite

zeros as (E;F )

Proof Let n
(1)
0 ; n

(1)
1 ; : : : ; n

(1)
p be the number of Jor-

dan blocks of respective dimensions 1; 2; : : : ; p + 1 at

1. Let c0; c1; : : : ; cg be the respective number of \c.m.i

blocks" of dimensions (0 � 1); (1 � 2); (g � g + 1) as-

sociated with �0 = 1; : : : ; �g = g. We now examine,

in that order, the nested sequence Z�1(1) = K(E),

Q�1(1) = F (Z�1(1)), Z�1(2) = E�1(Q�1(1)), : : : We

obtain here:

dim(Z�1(k + 1))� dim(Z�1(k)) =

gX
j=k

cj +

pX
i=k

n
(1)

i



y , p,

and column vector in each Jordan block at in�nity and

in each \c.m.i" block and the algorithms stops when all

such vectors have been selected. 2

Note that, using lemma 2.2, the recursions which give

the pairs (Z�f ;Q�f) and (Z�1;Q�1) are easily imple-

mented as matrix algorithms in which the Q(k) and

Z(k) are calculated together. The interpretation of

Z�f (k) is as follows:

Z�f (k) = F�1
k

(Ek)

fx0j9x1; x2; : : : ; xk Exn+1 = Fxn for n = 0; : : : ; kg

where

Fk =

26664
�F

0

0
...

37775 Ek =

26664
E 0 0 : : :

�F E 0 : : :

0 �F E : : :
...

...
...

. . .

37775
Indeed, it is easy to see that the �f recursion can be

interpreted as a recursive implementation of Lemma

(2.2), taking into account the particular structure of

Fk and Ek. Note that, in particular, the system with

inputs Exn+1 = Fxn+Gun is equivalent to PExn+1 =

PFxn+PGun i.e.

�
E
~E

�
xn+1 =

�
F
~F

�
xn+

�
G

0

�
un

where P is a row compression of G. Since G has full

row rank, the subspace V = Z�f ( ~E; ~F ) = Z�f (�E; �F )

(where � is the canonical projection u ! u(modG))

is the set of admissible x0 for this system. Since

�F�1(�E)X = F�1(EX + R(G)), V is also given as

the limit of V0 = X ; Vk+1 = F�1(EVk + R(G)) [1].

Similar interpretations can be given for the �1 algo-

rithm.

More generally, it is convenient to implement the �f

and �1 algorithms on an appropriate subset of rows or

columns, i.e. \localizing" the calculated subspaces in

given subspaces as done above.

2.3. Lattice

Applying Lemma 2.3 twice to the pairs (Z�f ;Q�f ) and

(Z�1;Q�1) we obtain the subspaces Z� = Z�f \ Z�1,

Z�f , Z�1, Z�f1 = Z�f+Z�1 inX andQ� = Q�f\Q�1,

Q�f , Q�1, Q�f1 = Q�f + Q�1 in Y. This yields the

block triangular decomposition

2664
F�(s) � � �

0 F
1
(s) � �

0 0 Ff (s) �

0 0 0 F�(s)

3775 (2)

This decompostion is well known. It is given, for ex-

ample, in [5] where a di�erent approach is used (which

allows to compute the �ne structure of the Kronecker

) , f

changed, but note that, in this upper block triangu-

lar form, the � block must appear in the �rst position

and the � block must appear in the fourth position.

It is clear that we can use the approach in lemma 2.1

for �nding speci�c invariant pairs for the pencil (E;F ).

For instance, using the ordered Schur form for the pen-

cil Ff (s) (which has only �nite zeros, i.e. equivalent to

sI �Af ) we can �nd the pair which contains the � part

and the stable zeros of the pencil. For a regular pencil,

two subspaces associated with disjoint �nite zeros do

not intersect: in the general case considered here their

intersection is Z�.

2.4. In�nity block

We can de�ne two subspaces associated with the

\static" and \dynamic" zeros at in�nity [7].

Theorem 2.3 Z�s = Z� + K(E) and Q�s = F (Z�s)

form an invariant pair such that Z�s = ��11 (K ~E) and

Q�s = ��12 ( ~F ( ~E)) where ( ~E; ~F ) is the quotient pair as-

sociated with (Z�;Q�). The restriction pencil associated

with this pair has only trivial zeros at in�nity. The di-

mension of Z�s is equal to to the number of Jordan

blocks at in�nity plus
P

i
(�i + 1) and the dimension of

Q�s is equal to to the number of Jordan blocks at in-

�nity plus
P

i
�i. The restriction pencil associated with

this pair has only trivial zeros at in�nity.

Z�d = Z�1 \ F�1(E) and Q�d = F (Z�d) also form

an invariant pair such that Z�d = ��11 ( ~F�1( ~E)) and

Q�d = R( ~E). The restriction pencil associated with this

pair has no trivial zeros at in�nity. Dimension of Z�d is

equal to
P

i
(�i + 1) +

P
j
(n

(1)
j

� 1) and dimension of

Q�d is equal to
P

i
(�i)+

P
j
(n

(1)
j

� 1). The restriction

pencil associated with this pair has no trivial zeros at

in�nity.

Proof Follows from applying lemma 2.1 and noting

that K(E) � Z�1, Z�f � F�1(E). The construction

amounts to perform one step of the �1 recursion (i.e.

keeping the Jordan blocks of size 1) or the �f recursion

(i.e. removing the Jordan blocks of size 1) to the pencil

F
1
(s). 2

2.5. Nonorthogonal transformations

So far, the transformations that we have considered

which put the pair (E;F ) into block-triangular form

can be realized by means of orthogonal transformations.

It is possible to perform additional transformations us-

ing full row or full column matrices as pivots to zero a

block row or a block column in the transformed pair.

We have:



Q

that Q
�
E F

�
Z takes the form:

266664
�
�B� sI � A�

�
� � �

0 F
1
(s) � �

0 0 Ff (s) �

0 0 0

�
sI �A�

�C�

�
377775

(3)

where the pair (A�; B�) is controllable and the pair

(A� ; C�) is observable. A� matrix (resp. A�) has di-

mension
P

i
�i (resp.

P
i
�i) and the column dimension

of the B� matrix (resp. C� matrix) is equal to the num-

ber of c.m.i. indices �i's (resp. r.m.i. indices �i's).

Proof Using E�, which has full row rank, as a pivot, the

�rst row of (2) can be transformed as shown (where the

terms denoted � are constant). Since the pencil F�(s)

has only \c.m.i" blocks and no �nite zeros, the pair

(A�; B) is controllable. Results concerning the �-part

follows by duality. 2

Pole placement

The preceding transformation can be used for �nd-

ing a matrix gain F which places the (�nite or in�-

nite) controllable modes of a regular pencil (sE � A).

Consider the nonsquare \extended" pencil PB(s) =�
�B sE �A

�
. As shown above, it has an � part

which corresponds to the modes of sE � A which can

be shifted by a feedback BF . Let Q� and Z� be

such that Q�PB(s)Z� =
�
�B� sI �A�

�
. Since the

pair (A�; B�) is controllable, we can use a standard

pole placement algorithm for placing the eigenvalues

of A� + B�K�: this amounts to update the right trans-

formation Z� by a right multiplication with the non-

singular matrix

�
I K�

0 I

�
. If such a transformation is

carried out, we obtain by theorem 2.4:�
Q�

Q2

� �
�B sE �A

� 24 Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

35 =

�
�B� sI �A� �

0 0 s ~E � ~A

�
where �(A�) = �(A� + B�K�) and B� has the same

column dimension as B. The pencil s ~E � ~A contains

only uncontrollable modes (and also in particular all

the static modes of (sE�A)). It is easy to see that the

matrix Zd =

�
Z22 Z23
Z32 Z33

�
is invertible and thus there

exists F such that FZd =
�
Z12 Z13

�
. We obtain

�
sE � A� BF

�
=

�
Q�

Q2

�
�1 �

sI � A� �

0 s ~E � ~A

�
Zd

�1

p

the controllables modes of (sE �A). This construction

can be extended to pencils (sE � A) which are right

invertible. We can implement the following pole place-

ment algorithm.

Algorithm F=gppol(E,A,B,roots)

Inputs: E;A two n� n real matrices de�ning a regular

pencil, B a n� p real matrix and roots a set of desired

eigenvalues.

Outputs: F , a real p� n matrix such that the control-

lable modes of the pencil sE �A are located at roots.

3. Observer construction

3.1. A classical approach

By dualizing the algorithm given at the end of the

preceding section, it is possible to construct a strictly

proper observer for the system:

�(s)

�
(sE �A)x = Gu

y = Cx

where the pencil sE � A is regular. Here u is a known

input and y is an observation. The \extended" pencil

is now PC(s) =

�
sE � A

C

�
. This pencil admits only

�nite and in�nite zeros and rmi indices. The above

equations can be written Pc(s)x = G(e)

��
u

y

��
with

G(e) =

�
G 0

0 �I

�
. We can construct as above two

matricesQ and Z such that with appropriate partitions:24 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

35� sE �A

C

� �
Z1 Z�

�
=

24 sE � A �

0 sI � A�

0 C�

35
Here, by the regularity assumption, matrix C� has the

same row dimension as C. We may assume that, by an

appropriate choice of Q matrix, the eigenvalues of A�

are set to desired values using a standard pole place-

ment algorithm. However, the �nite and in�nite zeros

of sE � A are unobservable. The rhs matrix G(e) is

updated as follows:24 Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

35� G 0

0 �I

�
=

24 ��
G�;1

G�;2

� 35
We can now use the classical construction [8] for de�n-

ing an observer for z = Hx. We recall that an observer



y p p y ( ; y)

O(s)

8<: _w = Aow + Bo

�
u

y

�
ẑ = Cow

such that when t goes to in�nity ẑ(t)� z(t)! 0 for all

w(0).

Let Ao = A� =
�
0 I 0

�
QAZ

�
0

I

�
, Bo =�

0 I 0
�
QG(e), and H

�
Z1 Z�

�
=
�
Co Co

�
.

From standard observer theory we know that a neces-

sary and su�cient condition for ẑ(t) ! z(t) with ar-

bitrary dynamics is Co = 0. If this is the case, the

transfer function of u ! z in �(s) is the same as the

composed transfer function u ! (u; y(u)) ! ẑ (we de-

note y(u) the ouput of �(s) associated with the input

u). This construction is that of a standard observer,

the only di�erence being that the outputs of �(s) can

be improper.

3.2. Generalized observer

We consider, in a discrete time setting, a sequence of

variables �(k) k = 0; 1; ::: linked by:

E�(k + 1)� F�(k) = Gu(k); k = 0; 1; ::: (4)

We assume here that all the known quantities, inputs

and observations are put in the rhs member and we not

not assume regularity of the pencil (E;F ). Note that, in

general, the sequence � exists only for particular inputs

and particular \initial" state �(0).

Our objective is to construct a proper (causal) observer

for z = H�. From the preceding results we observe that
~�(k) = �(k)(modZ�) is uniquely de�ned and satis�es:

~E~�(k + 1) = ~F ~�(k) + ~Gu(k)

where ( ~E; ~F ) is the quotient pencil associated with the

invariant pair (Z�;Q�) and ~G = G(modQ�). In par-

ticular, we see that the sequence z(k) = H�(k); k =

0; 1; :::, is uniquely de�ned i� K(H) � Z�.

There exist two bases of Y and X represented by ma-

trices Q�1 and Z such that Q(sE � F )Z = : : :26666664

F�d(s) � � � �

0 Fb(s) � � �

0 0 Fs � �

0 0 0 Fg(s) �

0 0 0 0

�
sI �A�

�C�

�

37777775
and

QG =

26666664

G�d

Gb

Gs

Gg�
G1
�

G2
�

�

37777775

q g , p

Fg(s) (resp. Fb(s)) contains all the stable (resp. unsta-

ble) �nite zeros of the sE � F and the pair (A� ; C�) is

observable. We have:

Theorem 3.1 A causal (resp. strictly causal) observer

can be constructed for z(k) = H�(k) i� K(H) �

Z�d + Z�b (resp. K(H) � Z�1 + Z�b). An observer

with arbitrary error dynamics can be constructed for

z(k) = H�(k) i� K(H) � Z�f1

Proof Only if: Make a realization for the error dy-

namics from �(s) and O(s) and conclude that if e

goes to zero necessarily Co = 0. This mean K(H) �

the appropriate subspace.

If: constructive. By the previous lemma we know for

each Z the dynamics of x(modZ) and we take this as

an observer.
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