
A mixed symbolic - numeric software environment

S. L. Campbell�, F. Delebecquey and D. von Wissel y

� Dept. of Mathematics, North Carolina State University, Raleigh

NC 27695 - 8205 - USA

y INRIA - Rocquencourt, 78153 Le Chesnay Cedex - France

1. Introduction

The objective of this paper1

is to illustrate the use of a Maple to Scilab interface

(Scilab is a free CACSD package developed at INRIA.

ftp://ftp.inria.fr/INRIA/Projects/Meta2/Scilab

http://www-rocq.inria.fr/scilab). We show that

the interface is a powerful tool for analyzing nonlinear

systems and illustrate the interface on examples of the

modeling and control of mechanical multibody systems.

Many control applications require the use of both sym-

bolic and numeric computation. An illustrative exam-

ple is the analysis and controller design of a mechanical

system. To begin with, we need to compute the equa-

tions of motion. To study local stability we need to

compute its linearization. To apply control concepts

like feedback linearization we may need to compute the

inverse system. All these operations are symbolic com-

putations. To continue, we may want to do a computer

simulation of the nonlinear system, study stability of

the linearization at di�erent operating points or try a

nonlinear controller. These are numerical operations

evaluating the symbolic objects obtained before.

In the applications we have in mind, we �rst use sym-

bolic computation. Then we need to transfer symbolic

objects to numerically evaluable objects and �nally we

work with these new objects in a numerical environ-

ment. The opposite direction, that is the transfer of a

numerical objects into a symbolic object is often of no

interest. Indeed symbolic calculations are essentially

based on rational numbers i.e. each number is asso-

ciated with a pair a two \bignums" representing its

numerator and its denominator. This representation

allows to perform e�ciently exact calculations [5, 4] in-

volving e.g. polynomials and is well suited to study

speci�c problems which depend on a few number of pa-

rameters. For instance it is well suited for studying

parametric controllability of a linear system. However

it is di�cult to use this approach if the basic data are

oating point numbers. In that case, after conversion

1Research partially supported by INT-9220802, DMS-

9423705, ECS-9500589

to rational numbers, the symbolic algorithm is likely to

return a generic result. For instance any oating point

matrix converted to rational numbers will be consid-

ered as full rank by a symbolic package eventhough it

has a arbitrarily small singular values. In other words,

the use of symbolic package in that context may lead

to non robust results. Our approach is based on the

use of symbolic package for generating speci�c numer-

ical Fortran or C code which is dynamically linked to

Scilab.

2. Software tools

We use Maple for symbolic and Scilab for numerical

computation. What we need is an interface that per-

mits these tools to communicate with each other.

One realization of this interface is to incorporate the

Maple kernel in Scilab. This would allow one to per-

form symbolic operations within the Scilab environ-

ment. However, as a matter of fact, only a few Maple

functions would be available since symbolic computa-

tion requires a di�erent data structure and available

Maple operations have to be compatible with the exist-

ing Scilab data structure.

Another realization of the desired interface is to keep

Maple and Scilab separated and to handle the trans-

fer by an external tool. The latter structure allows

one to use the original software (thus keeping all of its

advantages). There is no need to �nd a compromise

between two essentially incompatible data structures.

Furthermore, this approach makes the transfer trans-

parent to the user and allows the use of compiled code

(Fortran or C) for the numerical evaluation of Maple

objects. Since the applications we have in mind re-

quire the use of numerous Maple facilities and execution

time for the numerical evaluation of the Maple objects

is important (mechanical multibody systems often in-

volve large expressions), we have opted for the latter

approach for the interface considered here. The key

point of this interface is the facility of dynamic linking

available in Scilab. The interface is based on the Maple

p p

expressions into Scilab functions. Using Macrofort2, we

transfer the Maple object into a Fortran (or C) sub-

routine and dynamically link the code to Scilab. The

linked code can be called like any other Scilab func-

tion with constant matrix parameters. For the applica-

tions that we consider, such as simulation and control

of large dynamic systems, it is important to generate

code which can be compiled. For instance, for ode sim-

ulations we generate a standalone Fortran subroutine

with a speci�c calling sequence compatible with Scilab

ode solvers. Another very important aspect is the use of

Maple optimize facility which allows to �nd common

subexpressions in a symbolic matrix, thus producing

e�cient code.

maple2scilab

Dynamic linkMacrofort

Fortran

ScilabMaple

The syntax of the function maple2scilab is the fol-

lowing:

maple2scilab(fname;maplematrix; parameters)

maplematrix is the name of the Maple matrix to be

transfered and admitting parameters as parameters (list

of vectors or matrices). fname is the name of the gener-

ated Scilab function: this function returns the numer-

ical value of the transfered matrix for given values of

input parameters. A similar function exists for sparse

matrices. maple2scilab generate two �les: fname.f and

fname.sci which contain Fortran and Scilab code. Com-

pilation of the numerical code can be easily automatized

by a short shell script, making the transfer transparent

to the user.

3. Examples

In this section we illustrate the approach on two exam-

ples.

3.1. Inverted pendulum

In this well known example, the state variables are the

position of the cart x = q1 and the angle � = q2. Below

2Macrofort and MacroC are Maple libraries that can be found

in the Maple share-directory

p p , g g g

L = m1+m2

2
_x2 + _�2(J=2 + l2m2

2=2) + lm2 cos(�)(_x _�� g)

L:=qd[1]^2*(m[1]+m[2])/2+qd[2]^2*(J/2+l^2*m[2]/2)+

qd[1]*qd[2]*l*m[2]*cos(q[2])-g*l*m[2]*cos(q[2]);

q:=vector(2);qd:=vector(2);qdd:=vector(2);m:=vector(2);

S1:=grad(L,qd);

S2:=evalm(grad(L,q)-

jacobian(S1,q)&*qd-jacobian(S1,qd)&*qdd);

F:=subs(qdd[1]=0,qdd[2]=0,evalm(S2));

M:=jacobian(S2,qdd);

maple2scilab(`msci`,M,[q,l,m,g,J]);

maple2scilab(`fsci`,F,[q,qd,l,m,g,J]);

This yields the equations of motion

M

�
�x

��

�
= F

where matrix M and vector F are directly available

as Scilab functions msci and fsci which evaluate M

and F as function of the input parameters q,l,m,g,J.

maple2scilab generated:

subroutine msci(q,l,m,g,J,fmat)

implicit double precision (t)

double precision q(2),l,m(2),g,J,fmat(2,2)

t4 = l*m(2)*cos(q(2))

t5 = l**2

fmat(1,1) = -m(1)-m(2)

fmat(1,2) = -t4

fmat(2,1) = -t4

fmat(2,2) = -J-t5*m(2)**2

end

function var=msci(q,l,m,g,J)

var=fort('msci',q,1,'d',l,2,'d',m,3,'d',...

g,4,'d',J,5,'d','out',[2,2],6,'d')

A simulation of the pendulum for a given proportional
control u is then easily obtained by the following Scilab
script:

link('fsci.o','fsci');getf('fsci.sci','c')

link('msci.o','msci');getf('msci.sci','c')

l=1;m=[1;.1]J=.1;g=9.81;

deff('zd=pend(t,z)',..

'q=z(1:2),qd=z(3:4);u=K*(z-zop);..

zd=[qd;inv(msci(q,l,m,g,J))*..

fsci(q,qd,l,m,g,J)+[u;0]]')

z0=[0;%pi/2;0;0];t=0:0.1:10;

xx=ode(z0,0,t,pend);

p

��� g=p sin(�) = 1=p cos(�) (1)

is obtained by assuming that we control � directly by

the acceleration of the cart �x.

3.2. Simpli�ed bicycle model

In this section we consider a more complex constrained

mechanical system (which has in addition nonholo-

nomic constraints). In this case, it is much more di�-

cult to obtain the equations of the model. A blind ap-

plication of the Euler Lagrange equations, introducing

Lagrange multipliers for the nonholonmic constraints

leads to a much more complex model in implicit form

in which all variables are coupled. The main di�culty is

to �nd an appropriate change of coordinates for simpli-

fying the equations of motion. This part requires many

symbolic computations which cannot easily be auto-

matically implemented. The model considered here is

a simpli�ed bicycle model introduced by N. Getz [6].

∆

α

∆

J

m

P

P P

2

1 3

x

z

y

rw 0

1

l 1

p

l
0

Figure 1 Simple bicycle model considered by Getz [6]

We denote by x1; y1 (resp. x2; y2) the plane coordi-

nates of P1 (resp. P2) and � = tan(�)=l1. The xy-

coordinates of the velocity of P1 are�
_x1
_y1

�
=

�
cos(�) � sin(�)

sin(�) cos(�)

� �
v1
v0

�
(2)

where v0 is the velocity of P1 perpendicular to the con-

tact line P1P3, and v1 the velocity parallel to P1P3

(rolling direcion). The rolling without sliding condi-

tion is v0 = 0 and we have from (2) the nonholonomic

constrains:

_x1 = v1 cos(�); _y1 = v1 sin(�)

To write the Lagrangian, we need the velocity of the

point mass m at P2 = (x2; y2; z2). We have

x2 = x1 + cos(�) l0 + sin(�) sin(�) p

y2 = y1 + sin(�) l0 � cos(�) sin(�) p

z2 = p cos(�)

(3)

g y y �

is small against the steering velocity _�, we have for the

kinetic energy of the steering wheel

Tkin =
J

2
(_� + _�)2 �

J

2
_�2 =

J

2

l21 _�
2

(1 + �2l21)
2

which yields for the Lagrangian:

L =
m

2

�
_x22 + _y22 + _z22

�
+

J

2

l21 _�
2

(1 + �2l21)
2
� gmz2 (4)

where _x2; _y2 and _z2 are computed from (3).

Let � denote the lean angle of the bicycle, set c� =

cos(�) and s� = sin(�), and de�ne the partitioned gen-

eralized coordinates and velocities of the bicycle as fol-

lows:

r = (�1; �; �)
T ; _r = (_�1; _�; _�)

T
, _r = (v1; _�; _�)

T

s = (�0; �)
T ; _s = (_�0; _�)

T
, _s = (v0; _�)

T

where �1 =
R
t

0
v1dt is the arc length of the trajectory

of the contact point of the rear wheel in the xy plane

and �0 =
R
t

0
v0dt. In these velocity coordinates the

nonholonomic constraints become �v1 = _�, v0 = 0, or

equivalently

_s +A _r = 0; where A =

�
0 0 0

�� 0 0

�
(5)

The Lagrangian is computed from (4), substituting

_x2; _y2 and _z2 by (3), and _x1 and _y1 by (2)

As shown in [1, 6, 3], the equations of motion can

be computed using a \constrained" Lagrangian Lc ob-

tained by substituting the constraints into the La-

grangian.

Lc(r
i; _ri) = L(ri;�A

j

i
(r) _rj)

where _sj + A
j

i
(r) _rj = 0. We obtain

V :=
d

dt

@Lc

@ _rj
�

@Lc

@rj
+

@L

@ _si
Bi

j;l
_rl = 0 (6)

where

Bi

j;l
=

@Ai

j

@rl
�

@Ai

l

@rj

which can be written in the following form:

M (r)�r = F (r; _r)

where M (r) := @V=@�r and F := V �M (r)�r.

For the bicycle model Lc is computed from L setting

v0 = 0 and _� = �v1 This yields the simple bicycle

model, which is composed out of the dynamical part,

containing the reduced order equations of motion, and

p , g

straints. Furthermore, we need to a vector of general-

ized forces G(r)u representing the control inputs. We

take a steering torque and a pedalling torque as control

inputs.

Dynamical part fM (r)�r = F (r; _r) +G(r)u

Kinematic part

8<
:

_� = v1�

_x1 = v1 cos(�)

_y1 = v1 sin(�)

(7)

Designing a controller for such a model is unnecessarily

complex. On the contrary, using the above decoupled

model a controller is easily designed.

Maple program to compute the reduced equations of mo-

tion: We have implemented the procedure described

before as a Maple script. The key step in this proce-

dure is the change of coordinates that puts the nonholo-

nomic constraint in the special form (5). In particular

it is not easy to determine the partitioning of the vari-

ables. There is no systematic procedure for executing

this step. The remaining steps can easily be translated

into a Maple script. To this end we use the following

set of generalized coordinates

foo � bar � �

q1 q2 q3 q4 q5

v0 _� v1 _� _�

qd1 qd2 qd3 qd4 qd5

_v0 �� _v1 �� ��

qdd1 qdd2 qdd3 qdd4 qdd5

Below is the resulting Maple session (l1 = b; l0 = c).

L:=-m*G*p*cos(alpha) +

1/2*J*(b*kappa[d]/(1+b^2*kappa^2))^2+

1/2*m*((v[1]+p*sin(alpha)*phi[d])^2+

(v[o]-p*alpha[d]*cos(alpha)+c*phi[d])^2+

(p*alpha[d]*sin(alpha))^2);

L = �mgp cos(�) + Jb
2
�d

2

2 (1+b2�2)2
+m=2

�
(v1 + p sin(�)�d)

2

+(vo � p�d cos(�) + c�d)
2
+ p2�d

2 (sin(�))
2

q:=vector(5);qd:=vector(5);qdd:=vector(5);

sg:=v[o]=qd[1],phi[d]=qd[2],v[1]=qd[3],

alpha[d]=qd[4],kappa[d]=qd[5],foo=q[1],

phi=q[2],bar=q[3],alpha=q[4],kappa=q[5];

L0:=subs(sg,L);#unconstrained lagrangian

LG2:=collect(

expand(subs(cos(alpha)^2=1-sin(alpha)^2,

expand(subs(phi[d]=kappa*v[1],v[o]=0,L)))),v[o]):

L_c:=subs(sg,LG2);#constrained lagrangian

c

h�
p ((q4)) +

�
q5 = + p (q4)q5

+m=2] qd3
2
�mpqd4 cos(q4)cq5qd3 �mgp cos(q4)

+Jb2qd5
2=(2

�
1 + b2q5

2
�2
) +mp2qd4

2=2

r:=subs(sg,vector([foo,alpha,kappa]));

rd:=subs(sg,vector([v[1],alpha[d],kappa[d]]));

s:=subs(sg,vector([foo,phi]));

sd:=subs(sg,vector([v[0],phi[d]]));

A:=matrix(2,3,[0,0,0,-q[5],0,0]);

V:=proc(al)

d_dt(diff(L_c,rd[al]))-diff(L_c,r[al])+

sum('A[a,al]*diff(L_c,s[a])','a'=1..2)+

sum('sum('diff(L0,sd[b])*B(b,al,be)*rd[be]',

'be'=1..3)','b'=1..2);

end;

B:=proc(b,al,be)

diff(A[b,al],r[be])-diff(A[b,be],r[al]);

end;

d_dt:=proc(f)

#The function d_dt differentiates f(q) and replaces

#the q' by dq, qd' by qdd respectively.

eval(innerprod(grad(f,q),qd)+

innerprod(grad(f,qd),qdd));end;

V1:=subs(m=1,vector(3,V));

M:=jacobian(convert(V1,vector),

vector([qdd[3],qdd[4],qdd[5]]));

M :=

2
664

M11 M12 0

M12 p2 0

0 0 M33

3
775

where

M11 = 1 + 2 p sin(q4)q5 + p2 (sin(q4))
2
q5

2 + c2q5
2

M12 = �p cos(q4)cq5

M33 =
Jb2

(1 + b2q52)
2

F:=convert(map(collect,map(expand,

subs(qd[2]=q[5]*qd[3],qd[1]=0,qdd[1]=0,qdd[2]=0,qdd[3]=0,

qdd[4]=0,qdd[5]=0,evalm(V1))),{qd[3],qd[4],qd[5]}),matrix);

F :=

2
664

F1

F2 � g p sin(q4)

F3

3
775

F1 =
��
2 p2 sin(q4)q5

2 + 2 p q5
�
cos(q4)qd4+�

c2q5 + p sin(q4) + p2 (sin(q4))
2
q5

�
qd5qd3

�

p q 4 (q) q

F2 =
�
�p cos(q4)q5 � p2 sin(q4)q5

2 cos(q4)
�
qd3

2
�

p cos(q4)c qd3qd5

F3 = �

2 Jb4qd5
2q5

(1 + b2q52)
3

= �M33

2 b2qd5
2q5

(1 + b2q52)

For the vector of generalized forces we have

G(r)u :=

2
4 u2=m

0

u1=m

3
5

This bicycle model can be controlled using various con-

trol strategies. We can use system inversion for track-

ing the lean angle of the bicycle to a desired trajectory.

This is possible because the bicycle is with this choice

of output a minimum phase system [6]. First, we con-

sider linear feedback control for stabilizing the bicycle

dynamics. For this we need to compute the lineariza-

tion of the bicycle model. This is easily done in Maple.

The linearization is of the form

M (r)��r =
@

@r
(F (r; _r) �M (r)�r)�r +

@

@ _r
F (r; _r)� _r

which needs to avaluated at r = rop, _r = _rop and
�r = �rop. In the case of the bicycle we can assume
that �rop = 0. To compute the linear system in rop it
su�ces to compute the Jacobian of F with respect to
(�; �; v1; _�; _�):

ff_x:=jacobian(convert(F,vector),

vector([q[4],q[5],qd[3],qd[4],qd[5]]));

The simulation function in Scilab are msci() and ff().
They are simular to those of the inverted pendulum
and will not be reproduced here. For computing a
linear feedback matrix K we proceed as follows: the
linearization is given by _x = Ax+Bu where x =

(��; ��; �v1; � _�; � _�)
T : The following scilab script com-

putes A and B.

F_x=[0 0 0 1 0;

0 0 0 0 1;

ff_x(r_op,rd_op,par)];

E=[eye(5,2),[zeros(2,3);msci(q0,qd0,par)]];

iE=inv(E);

A=iE*F_x;

B=iE*[zeros(2,2);0 1;0 0;1 0]

In this paragraph we use system inversion ideas to �nd

a trajectory tracking controller for the lean angle. Con-

sidering the lean angle and the velocity as output the

resulting system is minimum phase.

�

�

0.0 0.9 1.8 2.7 3.6 4.5 5.4 6.3 7.2 8.1 9.0
−0.40
−0.33
−0.26
−0.19
−0.12
−0.05

0.02
0.09
0.16
0.23
0.30

Figure 2 Linear stabilizing control

Start

−6.0−4.3−2.6−0.9 0.8 2.5 4.2 5.9 7.6 9.3 11.0
−1.0

0.2
1.4
2.6
3.8
5.0
6.2
7.4
8.6
9.8

11.0

Figure 3 The resulting trajectory in the xy-plane.

The input transformation�
u1
u2

�
=

"
M33

�
��+ 2 b2 _�2�

(1+b2�2)

�
m

(M11 _v1 +M12��� F1)m

#
+

�
w1

w2

�
(8)

puts the model into the form

8<
:

�� = w1

_v1 = w2

p2��� g p sin(�) = cos(�)�(�; _�; v1; w2; �)8<
:

_� = v1 �

_x1 = v1 cos(�)

_y1 = v1 sin(�)

(9)

�(�; _�; v1; w2; �) = �w2 p l0 + (�2p2 sin(�) + � p)v1
2+

v1 _� p l0
(10)

To compute a tracking controller for the output y =

(�; v) using the system inversion approach we need to

di�erentiat the output untill we have an expression

which can explicitly be solved for w. Noting that �

is decoupled, we may assume that � is controlled by _v1
and _�. This simpli�es considerably the design proce-

dure. Roughly speaking this amounts considering � as

q ()

is similar to the simpli�ed equations of motion of the

pendulum (1). Here again, a blind application of sys-

tem inversion is possible using Maple, but this lead to

an unnecessarily complex expression for the controller.

�d

�

0 2 4 6 8 10 12 14 16 18 20
−0.15
−0.12
−0.09
−0.06
−0.03

0.00
0.03
0.06
0.09
0.12
0.15

Figure 4 The lean angle � converges to the desired tra-

jectory �d.

v1

�

0 2 4 6 8 10 12 14 16 18 20
−1.5
−1.2
−0.9
−0.6
−0.3

0.0
0.3
0.6
0.9
1.2
1.5

Figure 5 The velocity is held constant and � =

tan(�)=l1 follows a kind of sine-function.

After perfoming two di�erentiations of � and one dif-

ferentiation of v1 we get expressions which can be ex-

plicitly solved for _� and w2. We note that this does not

require any symbolic di�erentiation. De�ning the error

equation as

0 =

�
b0(v1 � vd) + (w2 � _vd)

a0(� � �d) + a1(_�� _�d) + (��� ��d)

�
(11)

where

�� = cos(�)�(�; _�; v1; w2; �) + gp sin(�)

and solving (11) for _� and w2 we get an assymptotic

tracking controller which tracks the output y = (v1; �)

to the desired ouput trajectory yd = (vd; �d). The error

tracking dynamics are determined by the coe�cents bi's

and ai's. Clearly, before we apply this control to the

model we need to design a controller for � (we might

Start

−2.00−1.45−0.90−0.350.200.751.301.852.402.953.50
−2.50
−1.95
−1.40
−0.85
−0.30

0.25
0.80
1.35
1.90
2.45
3.00

Figure 6 The resulting trajectory in the xy-plane.

take the linear control w1 = k1(_� � _�d), where �d is

the solution of (11)) and we need to apply the input

transformation (8).

3.3. Conclusion

This paper has presented two nonlinear examples of me-

chanical systems. The �rst example is a simple inverted

pendulum, the second example is a simpli�ed bicycle

model. In Maple, using the Euler Lagrange equations,

we compute the equations of motion. We have shown

how to use the interface to transfer the equations to

Scilab for simulation or control. We have shown that

for dealing with complex models, we need the full power

of Maple to perform change of variables which cannot

be automatized since they require a deep a priori knowl-

edge of the model.

References

[1] A. M. Bloch and P. S. Krishnaprasad, Nonholo-

nomic Mechanical Systems with Symmetry, California

Institute of Technology, 1995,CDS Technical Report

No. 94-013.

[2] F. Delebecque and R. Nikoukhah, A mixed

symbolic-numeric software environment and its applica-

tion to control system engineering, Recent advances in

computer aided control, ed. H. Herget and M. Jamshidi,

pp. 221-245 (1992).

[3] D. von Wissel, DAE control of dynamical sys-

tems: example of a riderless bicycle, Ecole des Mines

de Paris (France), PhD thesis (1996).

[4] A. B. Ogunye and A. Penlidis, State Space Anal-

ysis using MapleV, Proc. IEEE/IFAC Joint Symp. on

CACSD, March 1994.

[5] N. Munro, P. Tsapekis, Some recent results using

Symbolic Algebra, Proc. IEEE/IFAC Joint Symposium

on CACSD, March 1994, Tucson.

[6] N. H. Getz, Control of balance for a nonlinear

nonholonomic nonminimum phase model of a bicycle,

Proc. of the ACC, Baltimore, 1994.

